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Abstract—The use of human finger-vein traits for the purpose
of automatic user recognition has gained a lot of attentionri the
recent years®. Current state-of-the-art techniques can provide
relatively good performance, yet they are strongly depend#
upon the quality of the analyzed finger-vein images. In this
paper, we propose a convolutional-neural-network-based riger-
vein identification system and investigate the capabilitie of the
designed network over four publicly-available databases.The
main purpose of this work is to propose a deep-learning metha
for finger-vein identification, able to achieve stable and Hghly-
accurate performance when dealing with finger-vein images fo
different quality. The reported extensive set of experimets show
that the accuracy achievable with the proposed approach cago
beyond 95% correct identification rate for all the four considered
publicly-available databases.

Index Terms—Convolutional neural network, finger-vein, bio-
metrics, identification.

I. INTRODUCTION

HE design of efficient biometric identification system
measuring unigue physical or behavioral characteristi
of individuals for their secure recognition, is nowadays

relies on the fact that a vein pattern can be seen as a netdvork o
dark lines on a brighter background. Veins can be segmented
and extracted as line-like structures [3], [6], [23], asveture

[71, [8], or minutiae [9], [10]. Vein patterns are also recized
using various thresholds, depending on neighborhood ngmbe
tracking times, and curvature values. Feature extracgoh-t
nigues based on subspace learning exploit appearance-base
methods, such as principal component analysis (PCA) [11],
[12], two-dimensional PCA [13], [14] or linear discriminian
analysis (LDA) [15], and consider the subspace coefficients
as discriminative characteristics. Global or local stimid
information such as the local binary histogram and invdrian
moments are employed by the statistical-based approaches.
Local binary pattern (LBP) [16], [17] and local derivative
pattern (LDP) [18] are examples of local-statistics-baseth-

ods, while the use of invariant moments is an instance of
global statistics [24]. Finally, local-invariant-basedetimods

gare inspired by approaches stemming from computer vision.

é\stypical application of these techniques is with the usage
gf key points for the scale invariant feature transform {§IF

challenging and relevant task for both the scientific and k9l [20].

industrial communities. Commonly employed physical bio-

metric traits include face, hand geometry, fingerprint, arsd

Most of the current state-of-the-art models suffer from
some shortcomings, mainly related to the associated &atur

among the others, whereas signature, voice, keystrokerpatteXtraCt'on approaches. For example, some of the existing

and gait are examples of behavioral modalities. As most B¢

thods do not perform well on low-quality images, which can
e originated by poor quality infrared light, ambient ligfif

these modalities are prone to spoof attacks [1], [2], there §

a high growth in demand for more user-friendly, yet securgonditions, light scattering in imaging finger tissues [21]

biometric modalities such as finger vein [3], hand vein [43 an@ finger, cold weather or poorly designed image capturing

palm vein [5], since they are harder to forge and difficult tgevices [22]. Besides that, most of the algorithms relies on
acquire without the users’ willingness. Vein images areallgu parameters that cannot be set as standard values and may

captured using near-infrared-based optical imaging By.steChange While considering different databases. Mo_reomr, f
The illumination system is composed by infrared light thategmentation-based methods, as well as for techniqued base

either passes through the hand, or it is reflected by it. Vel statistics, finger rotation and translation have a negati

patterns are then acquired through an infrared camera afi@Pact on recognition performance.
In order to overcome such limitations, in this paper we pro-

since the haemoglobin in the blood absorbs infrared ligjiay t

appear as dark lines in the acquired image [6].

pose to perform finger-vein-based identification by expigit

Despite the recent advances in finger-vein-based biom@@€P-1eaming techniques. Deep learning is mainly insptine

ric recognition, finger-vein extraction approaches stinain

the human brain and typically uses a multilayer perceptron

broadly categorized into four sets such as vessel extracti!LP) algorithm for classification. Deep-learning methods

[3], [6]-[10], subspace-learning-based approaches [15}-
statistical-based techniques [16]-[18], and local-irarstr

based methods [19]-[22]. The vessel extraction technigfle
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such as convolutional neural networks (CNNs) consist of a
number of convolutional and sub-sampling layers producing
fully connected layer, which in turn can be used as a
robust feature extractor and classifier module. The aim of
our work is to achieve good and stable identification per-
formance irrespective of the quality of the considered finge
vein images, their rotation, translation, and scaling. tdeo

to verify the effectiveness of the designed CNN, we have
tested our approach over four publicly-available fingenve

Identification”, in IEEE Transaction for Information Forensics and Securitydatabases- characterized by different image quality seWdle
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achieved performance shows that the proposed method is able



TABLE I: Details of publicly-available finger-vein image @dbases.

Database Subjects | No. of Fingers Details of Fingers Images Sessions | Image Size | Total Images
per Finger
HKPU [3] 156 2 Left hand index & middle finger 12 2 513 x 256 3132
FV-USM [25] 123 4 Left & right hand index & middle finger 12 2 640 x 480 5904
SDUMLA [26] 106 6 Left & right hand index, middle & ring finger 6 1 320 x 240 3816
UTFVP [27], [28] 60 6 Left & right hand index, middle & ring finger 4 2 672 x 380 1440

to guarantee stable and highly-accurate identificationli€s months, with an average 66.8 days. In each session, every
irrespective of the quality of the considered finger-veiagms. subject has providedl image samples from index and middle
Additionally, the proposed CNN-based identification systefinger of the left hand. Othebl subjects have one single
requires negligible manual effort for feature selectianfdct, session of acquired data.
it has been applied without variations to all the four coasid 2) FV-USM databaseThe FV-USM database [25] is from
databases, without using any application-dependenthtl@gs University Sains Malaysia. It consists of left and right dan
or any manually-set parameter. index and middle fingers’ vein images froi23 subjects.
This paper is organized as follows: a detailed descriptigkmong them,83 are male andl0 female, with an age range
of the four publicly-available finger-vein databases cdestd of 20 — 52 years. Images have been acquired in two different
in most of the related literature is first provided in Sectiosessions with six images per finger in every session. All esag
Il. These datasets are exploited here in the experimersts teare in gray level BMP format with a resolution 640 x 480
to facilitate reproducible research and future compasgsorpixels.
Section Il then provides a brief overview of state-of-the- 3) SDUMLA databaseThe SDUMLA database [26] has
art techniques specifically designed for finger-vein-bdsed been collected by Shandong University of China. It contains
metric recognition, identification, and verification sceoa finger-vein images of636 fingers from 106 subjects. Six
separately, while deliberately focusing on approachetedesimages have been acquired from each of the left and right
over the aforementioned four publicly-available database hand’sindex, middle and ring fingers in gray level BMP format
addition, an overview of existing works exploiting CNNs et with a resolution 0f320 x 240 pixels.
field of finger-vein-based biometric recognition is alsoegiv ~ 4) UTFVP databaseThe UTFVP database [27], [28] has
Section IV presents the topology of the adopted CNN, whileeen collected by the University of Twente, Netherlands. It
Section V details the proposed finger-vein-based biometdonsists ofl440 PNG images with672 x 380 resolution, taken
identification system. Section VI then discusses about them 60 subjects. Images have been acquired in two sessions
obtained experimental results, while conclusions aretenadly  from 6 fingers, i.e., left and right hand’s index, middle and ring
drawn in Section VII. fingers, with every finger registered twice in each acquisiti
session. The images have a densityl®$ pixels/cm and the

[1. FINGER-VEIN DATABASES : . ) A
. ) .. width of the visible blood vessels is— 20 pixels [29].
The effectiveness of our proposed CNN-based identifica-

tion system is evaluated on four publicly-available finger- Il. STATE-OF-THE-ART.
vein databases, namely the Hong Kong Polytechnic Univer- FINGER-VEIN PATTERNS AND BIOMETRICS
sity (HKPU) [3], the University Sains Malaysia (FV-USM) A relevant number of state-of-the-art finger-vein based bio
[25], the Shandong University (SDUMLA) [26], and themetric approaches are tested on in-house datasets, thirsgnak
University of Twente Finger Vascular Pattern (UTFVP) [27]it difficult to have a fair comparison with newly proposed
[28] database. The primary reason for using these specifiethod. Moreover, a significant performance variability ba
databases is because most of the existing finger-vein-baséiédn encountered when applying state-of-the-art appresc
recognition methods have been evaluated over one or mordmfdifferent databases, especially if low-quality fingeirv
these databases, and a fair comparison with these estblislmages are present. For example, although the maximum-
methods can be therefore given. An overview of the fowurvature-based (MC) approach proposed by Miura et. al [8]
considered databases is given in Table |, and the followingaches a remarkable equal error rate (EER)06009%
subsections provide more details about them. when applied over an in-house finger-vein database [8], its
1) HKPU databaseThe HKPU finger-vein image databaseperformance goes to a low correct identification rate (CIR)
[3] consists of images frorh56 male and female volunteers. Itof 65.40% when the same algorithm is applied to the HKPU
has been acquired between April 2009 and March 2010 usidgtabase [3]. A similar situation happens when the repeated
a contact-less imaging device at the Hong Kong Polytechrine tracking (RLT) feature extraction algorithm is takera
University campus. It is composed By}32 images from the account. In fact it leads to an EER @f145% using the
156 subjects, all of them in BMP format with a resolution ofettings proposed in [6], while only a CIR af9.52% is
513 x 256 pixels. In this dataset aboWB% of the subjects obtained when the same method is applied to the HKPU
are younger tham0 years, and finger-vein images frond5 finger-vein images. Performing tests on different largelipub
subjects have been acquired in two separate sessions witthatabases and comparing the achieved results with state-of
minimum interval of one month and a maximum of over sixhe-art methods evaluated on the same datasets, is treerdfor



TABLE II: State-of-the-art for finger-vein-based biometidentification.

Paper Database Subjects Feature Extraction Method Classifier Performance
Kumar et al. [3] HKPU 105 Gabor filter with morphological processin X-OR based similarity score CIR=90.08%
. SVD based minutiae extraction Fusion of Euclidean and
Liu et al. [10] HKPU 156 CIR=95.71%
LEBP based false removing Hamming Distance
Van et al. [30] SDUMLA 106 MFRAT [31] & GridPCA Euclidean distance CIR=95.67%
Lu et al. [32] SDUMLA 106 Polydirectional Local Line Binary Pattern Histogram intersection CIR=99.21%

o Genetic algorithm &
Ong et al. [33] SDUMLA 106 Minutiae CIR = 99.7%

k-modified Hausdorff distance (k-MHD

. SDUMLA 106 Dual-sliding window localizationt+ . . CIR=97.61%
Qui et al. [34] Euclidean distance
FV-USM 123 Pseudo-elliptical transformef 2D-PCA CIR=97.02%
. Block-based average absolute Ensemble component-based extreme
Xie et al. [35] SDUMLA 106 CIR=97.76%
deviation (AAD) features learning machines (EC-ELM) network
. Images, after Fuzzy contrast enhancement  Affine registration based template
Banerjee et al. [36]| SDUMLA 106 CIR=90.72%
+ CLAHE + directional dilation (DD) matching algorithm (ARTeM)

paramount importance for properly assessing the effews® line patterns in any orientations. The discriminative iabil
of a proposed method. of LLBP (local line binary pattern) [40] histograms from
In this regard, an overview of state-of-the-art finger-veidifferent orientations has been first exploited, with higtom
based biometric recognition systems tested over the pyblicintersection then employed to measure the similarity betwe
available databases are described in Section Il. Spegjificatwo histograms, using a score-level fusion to provide thalfin
since identification and verification have different penfiance similarity score. A CIR 0f99.21% has been achieved for the
indicators, works related to these two modalities are dised SDUMLA database. Ong et al. have proposed a reliable two-
separately in Section IlI-A and III-B, respectively. Addit- stage multi-instance finger-vein identification systemeldas
ally, since we propose the adoption of CNNs to performn minutiae comparison [33]. For their research work, they
finger-vein-based biometric identification, an overviewtlnd have used the SDUMLA dataset and combined minutiae
applications of CNNs in the field of biometric recognitiorfeatures extracted from multiple instances of finger vefs.
using finger-vein patterns is given in Section IlI-C. In morgenetic algorithm (GA) [41] has been used to select the most
detail, both approaches that uses CNNs as classifiers ffeliable minutiae points from the feature point pool-setKA
biometric recognition purposes as well as those exploitimgodified Hausdorff distance (k-MHD) [42] has been employed
CNNs for tasks such as spoofing detection, image quality evaluate the closet point set of two minutiae templates fo
assessment, and vein segmentation, are discussed. Aedetaibmparison. An identification rate 69.7% has been achieved
explanation of the pros and cons of our proposed method o¥er a not-specified number of employed training images. Qui
state-of-the-art approaches is provided in Section IV-C. et al. in [34] have used dual-sliding window localizatiordan
pseudo-elliptical transformation, with a two-dimensibpin-
A. Finger-Vein Biometric Identification cipal component analysis (2D-PCA) to project the transfmim
'gaage for feature extraction. Euclidean distance has been
used for measuring similarity between training and testing
ig1ages. A CIR 007.61% over the SDUMLA database and an
ccuracy 007.02% is obtained for the FV-USM database. In
35], the authors have tested feature-component-baseshext
learning machines (FC-ELMs) over the SDUMLA database,
with enroliment sets of eithe¥ or 5 randomly-selected images
re employed for training of each individual’s. Featuregeha
een extracted by a guided filter using the eight block-
sed average absolute deviation (AAD) directional festur
m high-quality finger-vein contours without performing

Gabor filters with morphological processing have been us
in [3] for feature extraction, with XOR-based similarityses
used for finding similarity between images and achieving
CIR of 90.08%. Liu et al. in [10] have used HKPU database’
session-1's data for their system, while discarding ses2is
biometric traits. Singular value decomposition (SVD) hasti
used for minutiae extraction, and local extensive binatyepa
(LEBP) has been employed for removing false pairs. An acc
racy of95.71% has been achieved fusing Euclidean and Ha
ming distances of the compared templates. Van et al. in [

h d th dified finite Radon t f tion (MFRA _
ave used the modified finite Radon transformation ( egmentation. An ensemble component-based ELM network

[31] for discriminant orientation feature extraction ovée . _
SDUMLA dataset. GridPCA [39] has also been applied t&EC'ELM)’ which averages th? -e|ght FC-ELM gutpqt_s, h_as
een employed for final decision. The best identification

remove further redundant information. Enlarging-tragiset rgaults have been obtained using 5 images for training, with
ETS)-based i techni 31] h b I ; ’
( )-based comparison techniques [31] have been emp 0%1 corresponding average accuracy 976 + 0.048%. For

for overcoming translations thus achieving a CO9R$7% .
by calculating Euclidean distances between test and rugiinithe same{5-1} strategy of SDUMLA database, Banerjee et

. <. al. in [36] have obtained an average percentage of correct
templates. In [32], authors have proposed a pol dlrectlonagr n .[ . . . . .
IocaIIDIine binar[y p]attern (PLLBP) r?\etﬁod for e;tra}étingrveiCass'f'cat'on (PCC) 090.72%, using affine-registration-based



TABLE llI: State-of-the-art for finger-vein-based biomietwerification.

Paper Database | Subjects Feature extraction methods Classifier Performance

. . . Overlapping pixels between
Gupta et al. [37] HKPU 105 Variational approach for vein extraction EER = 4.47%

registered and binarized templates

Xi et al. [38] HKPU 105 Discriminative binary codes (DBC) SVM EER = 1.44%
. Modified Gaussian Filter (MGF) enhanced Band Limited Phase Only Correlatio
Bakhtiar et al. [25] | FV-USM 123 EER = 2.34%
& displacement corrected images (BLPOC)

HKPU 105 Anatomy Structure Analysis based ) . EER = 0.38%

Yang et al. [22] Elastic Matching
SDUMLA 106 Vein Extraction(ASAVE) EER = 1.39%
Ton et al. [28] UTFVP 60 Maximum curvature Correlation based comparison EER = 0.4%
Kauba et al. [29] UTFVP 60 Different feature level fusion Correlation based comparison EER = 0.19%

template matching (ARTeM) algorithms. For their proposedGF) [52] and then correcting the image displacements.
method, the authors have first selected the region of irtterBsind-limited phase only correlation (BLPOC) [53] has been
(ROI) and, then, fuzzy contrast enhancement and contrased for measuring the similarity between registered asd te
limited adaptive histogram equalization (CLAHE) have beemages as it is resilient to noise, occlusions and rescaling
performed, along with an average filtering and directionédctors. An EER 0f2.34% has been achieved for unimodal
dilation (DD). finger veins. In [22] authors have used anatomy-structure-
Table Il reports a summary of the recent state-of-the-aatalysis-based vein extraction (ASAVE) and elastic maighi
finger-vein-based biometric identification techniquescdin achieving an EER 00.38% and 1.39% for the HKPU and
be noted that most of these techniques have been testedSBUMLA databases respectively. In [28] and [29] authors
either one or maximum two publicly-available databases. Wave used maximum-curvature-based feature extraction and
comprehensive testing of a proposed method on all the falifferent feature level fusion techniques to achieve EERs o
major publicly-available databases, to prove its effertass 0.4% and0.19%, respectively, over the UTFVP database.
under different conditions of available image quality, 8l s
missing in state-of-the-art literature. C. CNNs in Finger-Vein Scenario

i o . o In recent years, applications of deep-learning-based-meth

B. Finger-Vein Biometric Verification ods, such as CNN, have been introduced in vein-based recog-

Although our study focuses on biometric identification, waeition scenarios, as summarized in Table IV.
also provide an overview of the most relevant contributions  Biometric identification using CNN has been studied by
finger-vein-based verification systems. With the samemat® Radzi et al. in [43]. The employed network is based on the one
adopted in Section IlI-A, we explicitly review only papergproposed in [54], in which convolution and sub-sampling lay
tested on one or more databases out of the four publiclgrs are fused into one layer, resulting in a reduced-coritplex
available ones mentioned in Section Il. The details of tHeur-layer CNN. The CNN inputs are binary images obtained
reported works are summarized in Table Ill. by thresholding the ROI of original finger-vein images. The

Gupta el al. [37] have used a fusion strategy named varjgroposed system has been tested on an in-house dataset.
tional approach to combine enhanced vein images obtainedHong et al. in [44], exploited a pre-trained model of VGG-
from both multi-scale matched filtering and line trackingNet-16 [55] in order to perform biometric verification based
Similarity scores have been obtained by first registerirgy tlon finger veins. VGG-Net-16 is composed of 13 convolutional
two vein images to be compared and then computing tkeyers, 5 pooling layers, and 3 fully-connected layers. The
number of overlapping binary pixels between them. For theg@NN pre-trained model has been fine-tuned with training
proposed method, the authors have been able to achieveimages consisting of the differences between two finger-
EER of 4.47% for index and middle finger combination,vein images. Experiments are performed on three different
over the HKPU database. Xi et al. [38] have proposed databases, namely the SDUMLA database and two other
discriminative binary codes (DBC) learning method, builgli non-publicly-available datasets. Huang et al. [45] have- pr
subject relation graph to capture correlations among stgjeposed DeepVein, a finger-vein verification method based on
and, based on that, generating binary templates accordingatdeep CNN (D-CNN) architecture inspired by the VGG-
the graph transform. The distance between templates fridvet-16 model, and modified by removing some layers and
different subjects has been maximized during the graplstrameducing the number of filters in some convolutional layers.
form in order to ensure that templates are discriminativeé affhe resulting network consists of 26 layers: 10 convolwtlion
representative. Eventually, support vector machines (SVMayers, 4 pooling layers, and 2 fully-connected layers. The
have trained as code learners for each bit. The proposestwork is fed with two templates merged into a 2-channel
algorithm has obtained an EER df44% on the HKPU image. Training and validation are carried out using a @#tas
database. Bakhtiar et al. [25] have enhanced finger-vein igellected by the authors, and three different publiclyHatse
ages of the FV-USM database using modified Gaussian filgatabases are used for testing.



TABLE IV: State-of-the-art for applications of CNN in the liieof finger-vein-based biometric recognition.

SDUMLA (Low Quality)

636 (106 users)

Paper Database # Finger Classes CNN Aim Performance
Radzi et al. [43] Own 300 (50 users) Biometric Identification CIR = 100%
Own (Good Quiality) 120 (20 users) EER =0.804%

Hong et al. [44] own (Middle Quality) 198 (33 users) Biometric Verification EER =2.967%

EER =6.115%

Huang et al. [45]

Own (Training) 300.000
FVRC2016 - DS1 [46] (Testing) 1000
FVRC2016 - DS2 [46] (Testing) 1000
FVRC2016 - DS3 [46] (Testing) 1000

Biometric Verification

EER =0.42%

EER =1.41%

EER =2.14%

Raghavendra

Finger video [47]

300 (100 users)

PAD - Inkjet printed artefact

APCER = 3.48%

PAD - Laserjet printed artefact

APCER = 0.00%

et al. [48] . . PAD - Inkjet printed artefact APCER = 3.20%
Finger images [49] 300 (100 users)
PAD - Laserjet printed artefact APCER = 0.40%
, FV-USM 492 (123 users) i o ) EER = 0.80%
Qin et al. [50] Finger-vein image quality assessmept
HKPU 302 (156 users) EER = 2.33%
) FV-USM 492 (123 users) Finger-vein segmentation EER = 1.42%
Qin et al. [51]
HKPU 302 (156 users) and recovery EER = 2.70%

CNNs have been applied to finger-vein images in othgein images, relying on a fully convolutional network (FGN)
works, although not explicitly for biometric classificatio has been also proposed. The FCN consists of four layers:
purposes. Specifically, Raghavendra et al. [48] have pexposn input layer, two convolutional layers, and an output taye
a finger-vein presentation attack detection (PAD) algamithThe strategy adopted to compare either the features extract
based on a D-CNN inspired by Alex-Net [56], yet with sevethrough the CNN, or the ones obtained after the recovering
additional layers. The D-CNN model has been fine-tuned wigitocedure, is based on the computation of the amount of
finger-vein presentation attack samples. A majority votingverlap between templates. Experimental results on twéiqub
rule has been exploited to classify images as either borimger-vein databases have shown an improvement in terms of
fide or artefact. Two different attack databases have befmger-vein verification accuracy.
taken into account for carrying out the experiments, with th Table-V summarizes the details of the CNNs exploited in
proposed scheme able to guarantee high performance on hhthaforementioned works. A detailed comparison among them
of them, improving the achievable results in comparison tind the network here proposed for finger-vein-based bignetr
other existing PAD methods. Qin et al. [50] proposed a dedgentification is provided in Section IV-C, after the deddil
neural network (DNN) consisting of three convolutionaldes;, description of our proposed CNN architecture.
three max-pooling layers, two fully-connected layers, and
softmax layer, to predict the quality of finger-vein images;\y convoLUTIONAL NEURAL NETWORK & T OPOLOGY
to be used in a biometric verification system. Specifically,
the network’s aim is to automatically label low- and high- In this section details of the employed CNN in the proposed
quality images. Assuming that low-quality images are likelfinger-vein-based biometric identification system are mgive
to yield more false non-matches, the authors have studied th
impact on recognition performance of considering only iesmg :
classified with high quality by the proposed DNN, while IeverA' Convolutional Neural Network
aging on state-of-the-art algorithms for feature extactind A CNN is a multilayer perceptron (MLP) network with a
comparison of finger-vein patterns [3]. Two publicly-aahile special topology containing more than one hidden layer.[56]
databases have been considered, with the proposed mdedNs are primarily used for object recognition in image pro-
outperforming the existing quality assessment approacpias cessing, handwritten character recognition and speedy+rec
et al. have also proposed a deep learning model to extradion, as they automatically extract discriminative teas
and recover vein features. Specifically, their CNN has beérside their layers from raw input information, without any
exploited to segment vein pixels from the background, tgpecific normalization. This kind of model is advantageous
predicting the probability of a pixel to belong to a veirfor input data with an inner structure like images, and where
pattern. The proposed CNN consists of two convolutioniivariant features have to be discovered. One of the main
layers, two max-pooling layers, two local normalizatiopdes, interest for using CNNs is to avoid hand-designed input
one fully-connected layer, and a softmax layer. Besidess #ma features, which may not have been derived by considering the
approach for recovering vein patterns in the extracted finggeneral problems. Following subsections will provide deta

description of different layers of a CNN.



TABLE V: State-of-the-art CNN architectures used for fingeim-based biometric recognition.

Paper Input size Conv layers | Kernel size | Pooling layers | FC layers Loss function Reference CNN | Learning rate
Radzi et al. [43] 55 X 67 x 1 4 TXT 2 2 Mean square error [54] 0.001
0.00001
Hong et al. [44] | 224 x 224 x 3 13 3x3 5 3 softmax VGG-16 [55] 0.0001
0.0005
Huang et al. [45] | 128 x 128 x 2 10 3x3 4 2 Cross entropy error|  VGG-16 [55] 0.01
11 x 11 0.00001
Raghavendra 5%X5 2+3 0.0001
224 x 224 x 3 8 3 softmax Alex-Net [56]
et al. [48] 3x3 (extra) 0.001
0.01
. 5X5
Qin et al. [50] 80 x 240 x 1 4 3 2 softmax - 0.0002
3 x3
5x5 0.0002
15 x 15 x 1 3 2 2 softmax -
) 3x3 0.01
Qin et al. [51]
9x9 0.0001
39 x 146 x 1 2 0 1 Mean square error -
5X%X5 0.01
‘ Proposed 65 x 153 x 1 5 5x5 3 1 softmax - 0.00001

1) Convolutional Layer:A set of two-dimensional convo- this layer is that once we know that a specific feature is in
lutions is performed in the convolutional layer between thiie original input volumei.e. high activation value, its exact
input mapsz!, , with I andm being respectively the level andlocation is not as important as its relative location to tteeo
map indexes, and the filters represented through the kerrfelstures. This layer drastically reduces the spatial dsioen

wfhm, being n the filter index. Then-th output mapy!, of of the input volume. As a consequence, the amount of pa-
layer! is computed as: rameters or weights is significantly reduced, thus lowetirgy
At computation cost and controlling over-fitting.
yh — Z wh o wal gl ) 4) Fully _Connected LayerThis layer takes the output of
— ’ the preceding conv or pool layer or ReLU and generates an

1 ) N dimensional vector, wheréV is the number of classes
where A7 S the number of input maps, denotes convo- {hat the program has to choose from. A softmax classifier
lution, andp,, is the bias of then-th output map in thé-th 5 yynically employed to predict the probability of the irpu
level. The values characterizing the kernels and the biases image belonging to a specific label. Let, be them-th input

set according to [57]. _ _ ~ map of the output layer, then the linear combinatiop is
2) ReLU: The rectified linear unit (ReLU) is a nonlinearyefined as:

layer (or activation layer) which is usually applied immezteiy M

after the conv layer described by (1). The purpose of this On = Z (Wn i * Tn + b)), (2)

layer is to introduce nonlinearity in the system. In the past m=1

nonlinear functions likeanh andsigmoid have been used, butwhereM = 1024 in our case as shown IisM3R; of Fig. 1. A
researchers have found out that ReLU layers work far betterily connected layer looks for some high level featuresafahi
allowing networks to be trained faster without scarifyifgt are strongly correlated to a particular class, by computing
accuracy. It also helps to alleviate the vanishing gradieptobabilities for the available classes. The probabiliistré
problem, an issue making the lower layers of the netwobution of the input data over C different classes is predicte
to be trained very slowly due to the exponential decrease ®f the softmax function:

the gradient through the layers. The RelLU layer applies the exp (Ou)

function f(y) = max(0,y), changing all negative activations Py=—g—"—- 3)
to 0. This layer increases the nonlinear properties of thdeho S exp (On)
and the overall network, without affecting the receptivédie n=1

of the conv layer. B. Network Tobol
3) Pooling: Pooling layer is also referred to as a down-" etwork 1opology

sampling layer. Maxpooling is the most popular layer option The CNN we have proposed is shown in Figure 1. The
It takes a filter, normally of size x 2, and a stride of network has 5 convolutional layers, 3 max-pooling, 1 ReLU,
the same length. It is then applied to the input volume ar@hd a softmaxloss layer. The detailed topology is descrised
outputs the maximum value in every subregion that the filtépllows:

convolves around. Average pooling and L2-norm pooling aree« L,: the input layer with an input data size i x 153],
other options for pooling layers. The intuitive reasonietind which is the size of input images of finger veins. A
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Fig. 1: Employed CNN architecture.

detailed description of how input data are processed @ x 153 along with the kernel of sizé x 5, we are instead
get to this size is provided in Section V-A and V-B;  required of a totalb conv layers and3 max-pooling layers

o Li1My: first hidden layer, composed ky3 convolutional to dissolve the input image into a fully connected layer.sThi
filter of size[5 x 5 x 1] and a max-pooling (MP) layer significantly reduces the training and testing time, and als
of size [2 x 2]. This layer transforms the input dataincreases the identification accuracy. Moreover, our iegrn
into CL1M; = [30 x 74 x 153] low-level features after rate is fixed into a very low value di.00001, that entails a
convolving and down-sampling; very deep training and results into a very low testing error.

e LsMs: second hidden layer, composed hy2 conv filter More importantly, the only work that has investigated so
of size[5x5x153] and a max-pooling layer of siZ@x2]. far the possible use of CNN for finger-vein-based biometric
This layer transforms the first hidden layer's output int@entification is [43], where the authors have used inputiesa
CLyMy = [13 x 35 x 512] features; of size 55 x 67 with kernel size of7 x 7. This means that,

o L3Ms: third hidden layer, composed B§68 conv filter with every convolution, a very large block of information
of size [5 x 5 x 512] and a max-pooling layer of sizeis processed, with a potentiality of leading into a very fast
[2 x 2]. This layer transforms the second hidden layerisaining saturation and a consequent high variability foe t
output intoCLsM3 = [4 x 15 x 768] features; testing results. Also, there remains a high possibilityoofing

o LyM3R;: the fourth hidden layer is composed B924 some minute feature details of the finger-vein while tragnin
convolutional filter of sizel4 x 15 x 768] and a ReLU and testing. The results reported in [43] are also very hard t
layer. This layer changes the previous layer’s activatioeplicate, since they have been obtained from a small irséou
map into aCL4M3R; = [1 x 1 x 1024] feature map; dataset containing 50 subjects.

« LsM3Ry: the final hidden layer, or fully connected layer, In summary, it can be stated that the advantages of the
is produced by convolving the previous layer’s activatioproposed CNN over the current state-of-the-art CNN archi-
map withU convolutional filters of siz¢l x1x1024]. The tectures are in the use of more realistic input image sizth wi
U neurons of this layer represent theclasses/subjects. optimized kernel size that reducing the training and testin
This layer generates a fully connected network with thime and a very low learning rate for performing a very deep
input data and produces the probabilities of its belongiritaining, thus significantly lowering the testing error.
to one of theU classes. Softmaxloss function is used a§/ E E Vv B S
loss function for back-propagation. . MPL-OYED I-NGER- EIN BASED BIOMETRIC SYSTEM |

Table-VI shows the configuration details of our proposed Once finger-vein data are preprocessed, the corresponding

CNN with kernel size, number of stride, and padding. templates are generatgd as .des_cnbed inSection V'_B' The
performed training and identification phases are described

. . . Section V-C and V-D, tively.
C. Comparison with state-of-the-art CNNs used for flnger-ec on an respectively

vein images A. Preprocessing

As shown in Table-V, most state-of-the-art CNN archi- The original images, gathered from four publicly-avait@bl
tectures applied to finger-vein images require square s pullatabases, are pre-processed for ROl extraction and image
as VGG-16 or Alex-net. Native biometric traits are insteag@nhancement. As a first step, the images from all the con-
typically acquired according to a rectangular shape, thegze sidered databases, having different sizes, are subsarntpled
implying the need for severe resizing operations, which c@36 x 190 pixels in order to guarantee uniformity. Beside
distort original features and loose vital information. Quo- that, for the databases where the images show a ratio between
posed CNN instead takes input images of gize<x 153 x 1, number of rows and columns different from the target one,
therefore reducing the chances of distortions. marginal background parts are removed by selecting a dentra

Moreover, very small kernels are used in approaches sumfea of the image. Eventually, the ROI, i.e. the part of the
as [44] and [45], therefore increasing the number of reguirénage which contains the interested finger, is then extdacte
conv layers and pooling layers, and resulting in longer timend a binary mask in which the white pixels correspond to
for training and testing. As our input image size is fixed intthe finger region is obtained. Specifically, the ROI extiatti



TABLE VI: Proposed CNN configuration.

Layer Type Number of Filter Size of Feature Map | Size of Kernel | Number of Stride Number of Padding
Image input layer - 65 x 153 x 1
CL; (Convolutional layer-1) 153 65 x 1563 x 1 5x%X5 1x1 0x0
M; (Max-Pooling Layer-1) 1 61 x 149 x 153 2 X2 2 X2 0x0
CLs (Convolutional layer-2) 512 30 x 74 x 153 5X%X5 1x1 0x0
M2 (Max-Pooling Layer-2) 1 26 X 70 X 512 2x2 2 X2 0x0
CLs (Convolutional layer-3) 768 13 x 35 x 512 5X%X5 1x1 0x0
Ms (Max-Pooling Layer-3) 1 9 x 31 x 768 2x2 2x2 0x0
CL4 (Convolutional layer-4) 1024 4 x 15 X 768 4 x 15 1x1 0x0
R; (ReLu Layer-1) - 1 x1x 1024
CLs (Convolutional layer-5) | U (number of classes 1 x1x 1024 1x1 1x1 0x0
Softmax Layer - Ux1
T ST TN T T ST R ST ST ST T T ST RS ST ST ST RS S F T U O U U T U O A A O A A O A T O
TN ISR ST ST ST T RS S DT ST ST TN TN DU T RS ST RS RS ST R R N R R N
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 -1(-1)-1f-1|-1|-1 -1 f-1|-1}-1(-1|-1|-1]-1}|-1|-1]-1]-1 i 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1(-1]-1}f-1r|-1}|-1}-1f-1|(-1}|-1|(-1|-1|-1]-1|-1]|-1]-1]-1 1 1
(a) Masks for detection of upper region of finger (b) Masks for detection of lower region of finger

Fig. 2: Masks for ROI selection of finger-vein images.

is based on the method proposed by Lee et al. [16], wharader diverse illumination conditions. Hence, the netwogy
two different masks, as shown in Figure 2, are used to extraeguire images captured in different settings for its prope
the upper and lower finger’'s edges respectively. For the HKRtaining, in order to not to affect the identification acaya
database the aforementioned masks are provided, whereasTth find the best combination of templates for training, we
aforementioned procedure is applied to the other databadesve investigated, 2, 3, and4 images’ combinations from all
Starting from the extracted edges and masks, a normalizatavailable sessions for training. The obtained resultsvatbus
step is performed in order to compensate rotation and atrtito find the best possible combination of templates to be used
translation during the acquisition step. In our work, we tnge for person identification.
approach proposed in [58], which attempts to fit a straigtd i CNN Traini

. . . C. raining
between the edges detected in the previous step and estimate )
the parameters of rotation and vertical translation whigh a_ "€ generated templates are passed through the designed
later used to perform an affine transformation. If requited, CNN and a set of very low-level features are extracted in
normalized images may be then enhanced through contrihg first hidden layer. The network gradually bwlo!s up over
limited adaptive histogram equalization (CLAHE) [59], whi Fhese low-level features in the ;ubsequent convolutiayalrs,
is an adaptive histogram equalization (AHE) method who&& order to create a set of high-level features for the fully

aim is to improve the contrast of the image by limiting-onnected layer. _ _
the contrast amplification in the different considered pait For our experiments we have considered each finger of every

the image. The preprocessed images are then transposedR&igon @s & separate class. For the HKPU dataset, Biice
resized into65 x 153 pixels. subjects have contributed with their index and middle fisger
Figure 3 shows a comparison of the final images with ag two sessions, there is a total 2f0 classes available for

without performing the CLAHE enhancement for the fou}raining. The remaining1 subjects have contributed only to
different databases session 1, so they have not been considered for trainingrin ou

tests and they have been instead only used as imposters while

testing. Similarly, for FV-USM database we have considered

492 classes 123 subjects with4 fingers each)£36 classes
Bigger images usually lead to a larger CNN with moréor the SDUMLA databasel (06 subjects with fingers each),

hidden layers. Hence, in order to have a feasible size nktwoand 360 classes for the UTFVP databag# (subjects with6

the images are first resized in& x 153. In our approach, fingers each).

the training and testing templates of our network are eitherFor CNN designing and training we have used the

generated by selecting the images from a single session,MetConvNet-1.0-beta24 tool [60]. For training purpo96s;

proposed by existing state-of-the-art methods, or by siakgc finger-vein images are considered, with the remainino

a combination of images from all available sessions. Thesed for validation. The learning rate of the CNN is set at

reason behind this latter strategy is that, as can be seen fr@00001 with a batch size o8 samples for HKPU and FV-

Fig. 4, the same data can be acquired in different sessidfSM, 4 for SDUMLA and 2 for UTFVP, so that the loss can

B. Template Generation
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Fig. 3: Original and CLAHE [59] enhanced finger-vein imagenfr four publicly-available databases.
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(b) FV-USM

trained classes, then it is possible to declare them as "not-
identified”.

VI. RESULTS& DISCUSSION

In order to evaluate the proposed network, we have first
Fig. 4: Different luminosity images from different sesssoof compared its performance with several state-of-the-anh-id
four publicly-available databases. tification techniques in Section VI-A, by using the training
and testing strategies adopted in referenced papers for our
be minimized with higher precision through the execution gfroposed network as well.
every epoch or iteration. As for the number of epochs, higherWe have then designed an optimal training strategy for
numbers usually allow the network to be well-trained, sd thaur proposed network in Section VI-B. Most of the state-of-
the weights of different layers are updated with precisfor. the-art techniques have used either a single image or images
our experiment, we have consider2sd0 epochs for all the from a single session for their network’s training, whichyma
experiments. The main purpose of using such a low learningt be ideal for our CNN-based approach. It is in fact well-
rate and high number of epochs is that it is typically prafeza known that the availability of a single sample of every class
to let a network learn very slowly and converge into thbere individual fingers, does not allow a CNN to get trained

(d) UTFVP

smallest details of every class. properly.
o Eventually, we have also evaluated the utility of explajtin
D. Identification image enhancement preprocessing techniques together with

In the identification stage, the testing templates are gehe proposed network in Section VI-C, to understand if ferth
erated as described in Section V-B from the remaining inperformance improvement could be achieved.
ages. For each testing sample, the trained CNN returns &Il the experiments have been performed in MATLAB
probability value for all the available classes/fingers.eTH(R2017a) with a system configuration 6£Gb RAM; Ti-
maximum probability value identifies the most similar fingetlan X™(Pascal) graphics card; iB.40GHz processor and
to the testing sample. As we have considered each and ev&fipdows® 10 operating system.
finger of an individual as a different class, we are able to _
identify the particular finger with which it is matched anathA- Performance Comparisons
corresponding subject to whom it belongs to. The identification accuracies achieved by the state-of-the
It is worth specifying that, similar to what has been proart finger-vein-based biometric systems that are discussed
posed in [3], for our experimental setup we have introducé@ble Il are reported in Table VII, together with the obtaine
a threshold for matching probability of a test image, belowerformance with our proposed CNN-based approach, when
which we consider the test image as “not-identified”. This igsing the same training and testing strategies. The resiits
for the purpose of genuine imposter testing where no sampdénable while exploiting two of the most-commonly empldye
images are trained for that particular subject, as they ate methods for finger-vein recognition, i.e., MC [8] and RLT ,[6]
associated with any of the enrolled identities. For a givamder all the considered settings, are additionally regbfor
testing sample, if the matching probability value returdgd further comparisons.
the proposed network is less th&fi% for its comparisons  As it can be seen from the reported accuracies, our CNN-
with any trained class, then that test image is classified based identification system cannot be properly trained unde
“not-identified” or “not-present” in the database. For exdan the experimental setup employed in [3], where only session-
we have tested this scenario with the finger-vein images bfimages from HKPU dataset are used for training, and
the 51 subjects captured during a single session in the HKPRd¢ssion-2 images for testing. A similar situation is en¢ergd
dataset. Such images have not been ever employed for gainivhen comparing the proposed system against the one in [34],
purposes and have been instead used only as testing probéere tests over the FV-USM dataset have been performed by
Each time, when a test sample’s result reaches into a maximoomsidering only the first image of every finger from session-
matching probability value of lower thaf0% for all the 1 for training and thes images per finger of session-2 for
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TABLE VII: Identification accuracy comparison for the fouortsidered publicly-available databases.

L . State-of-the-art comparison methods Proposed
Database Training Testing
Kumar et al. [3] | Quietal. [34] | Vanetal. [39] [ Jiaetal [31]| Vanetal [30] | Xie etal. [35] | Banerjee et al. [36]| MC [8] RLT [6] CNN
6 images from 6 images from
HKPU 90.08% - - - - - - 85.24% 78.28% 71.11%
session 1 session 2
first image from 6 images from
FV-USM - 97.02% - - - - - 90.34% 78.28% 72.97%
session 1 session 2
4 images remaining2 images - - 91.83% 92.50% 95.67% - - 86.01% | 87.11% 97.48%
SDUMLA
5 images remaining image - - - - - 97.76% 90.72% 97.95% | 96.06% 98.90%
1 image from remaining image
UTFVP - - - - - - - 92.22% 93.05% 95.56%
each session from each session

TABLE VIII: Identification accuracy for different training 4 original images from all the available sessions of each of
strategies over original images. the finger-vein patterns from the four databases are carside
Training (images from each available sessions for the training of our .network. .

Database Table VIII summarizes the obtained results and clearly

! 2 S ‘ shows that, if the number of training samples from each
HKPU | 82.19% | 92.02% | 95.32% | 96.55% finger is increased, then the achieved accuracy also ireseas
FV-USM ] 91.75% | 94.82% | 97.53% | 98.58% significantly. Comparing these results with those repoited
SDUMLA | 75.25% | 77.99% | 80.27% | 97.48% Table VII, a notable improvement in terms of achievable per-
UTFVP 95.56% . . . formance can be seen for both HKPU and FV-USM databases.

From Table VIl it can also be noted that there is not much

testing. Again, the reason behind such a low performan@#éference in accuracy, for HKPU and FV-USM database,
depends upon the number of training samples, along witthen3 or 4 images are used for training. Hence, for further
the different quality of finger-vein images that exists irotw €xperiments we employ images from each session of these
distinct sessions, as shown by the examples in Fig. 4. two databases for training. When considering the SDUMLA
A different behavior of our network has been observed whétatabase4 images from each session are needed for training,
considering the training/testing settings employed ir] fg@d  since low quality images are present in this database, agsho
the SDUMLA database, which contains images taken fromia Figure 3. As for the UTFVP database, we can choose at
single session. In this scenario, the method here propasednost one image from each session for training, since only
able to achieve identification performance better thanehod images are available for each finger's acquisition sessions
obtained in [35] and [36]. It is therefore reasonable to olse The obtained results show that identification accuracytgrea
that the proposed CNN-based identification system can wdhan95% can be achieved for all the four considered publicly-
properly when images of similar quality are used for bot@vailable databases.
training and testing purposes, regardless the absoluti&yqua
level of the considered images. This assumption is confirm€d Proposed Network’s Accuracy for Best Training Strategie

by the results in Table VII, referred to the comparison of | this subsection we report the results of experiments
the proposed approach against MC and RLT, while takingrformed in order to further evaluate the effectiveness of
one finger-vein image from each session of the UTFVEyr proposed approach. Specifically, we first have assessed
dataset, and using the remaining ones for testing purpdbes. the improvements that can be obtained when the proposed
proposed CNN-based identification system easily outper$or network is trained according to the settings described in
both MC and RLT. Section VI-B. A performance comparison with standard MC
It is worth remarking that the aforementioned results hayg,d RLT methods is also provided here. Moreover, we have
been obtained with the proposed CNN-based identificati@q investigated whether the proposed method needs any
system without performing any kind of enhancement on finggfnage enhancement technique to further improve the attina
vein images. Conversely, all the methods we are comparip@ntification performance.
with use some image enhancement technique and featurgaple 1X shows rank-1 identification accuracy for four
selection processes. Therefore, the use of original ima%licly-available databases, when exploiting the oadjin
without any preprocessing and automatic feature extnactie finger-vein images with MC, RLT, and proposed CNN-based

among the advantages of our proposed network. approach. Identification performance obtained using tiwe pr
o ) posed system, when the network is fed with CLAHE [59]-
B. Training Strategy Selection enhanced finger-vein images, is also reported here.

As mentioned in the previous subsection, the use of a singleAccording to the obtained results, the proposed CNN-based
image or images from a single session for training purposéentification system systematically outperforms MC and RL
may not be enough to produce the desired accuracy. Theyefaggproaches. It can also be seen that the contrast-enhanced
we have analyzed the full potentiality of our proposed CNhNnages achieve performance better than the original ones
architecture by investigating the variations in identifica ac- only when considering the UTFVP dataset. It is evident from
curacies that can be achieved while adopting different rermmbFig. 3 that vein patters in images from UTFVP database
of images for training. Hence, wherever possiile?, 3, and are significantly more prominent and clearly distinguidbab
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TABLE IX: CNN-based identification accuracy over the comsit publicly-available databases.

Methods
Database Training Testing CNN with CNN with CLAHE [59]
MC RLT
original images enhanced images

HKPU 3 images from each session remaining 3 images from each sessipn83.33% 83.81% 95.32% 94.37%
FV-USM 3 images from each sessions remaining 3 images from each sessign92.60% 94.44% 97.53% 97.05%
SDUMLA 4 images remaining 2 images 86.01% | 87.11% 97.48% 95.13%
UTFVP 1 image from each session| remaining 1 image from each session 92.22% 93.05% 95.56% 98.33%

Recognition Rate (%)
Recognition Rate (%)

95

=4=Original

|=4=Original
CLAHE |

CLAHE

|

I

|

i

I

I

I

4

i

I | |

| !~ Enhanced 04 !~ Enhanced
1 2 3 4 5 1 3 4 5
Rank Rank

Fig. 5: HKPU database: CMCs for original and contragfig. 7. SDUMLA database: CMCs for original and contrast
enhanced finger-vein images while 3 images of each fingamhanced finger-vein images while 4 images of each finger are

from both sessions are used for training and testing. used for training and 2 images for testing.
100 100
99 99
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N 1S3 L
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g 9 Z
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Fig. 6: FV-USM database: CMCs for original and contrastiy 8. UTFVP database: CMCs for original and contrast

enhanced finger-vein images while 3 images of each finggihanced finger-vein images while 1 image of each finger from
from both sessions are used for training and testing. both sessions are used for training and testing.

in their enhanced versions rather than in their originalsone = | ) _ .
Nevertheless, the proposed CNN-based approach is t)bpiczﬂf‘t'on irrespective of the environmental conditions. Weeha

able to guarantee a very-high identification rate withoungis Presented an exhaustive set of experimental tests performe
any image enhancement technique over the four commonly-used and publicly-available dasalsa

Figures 5-8 provide further details regarding the proposJ@e obtained results show that it is possible to achieve a

method, by reporting the cumulative match curves (CMC) of@nk-1 identification accuracy greater than’ for all the
tained for different ranks, while using both the originatiahe four databases, using our proposed CNN architecture. The

contrast-enhanced versions of the finger-vein images. RaRkESENt work is one of the first comprehensive study anagyzin

5 identification accuracy greater th&8% can be achieved & finger-vein-based biometric identification system withreno
for all the four considered publicly-available databasesije than two publicly-available databases, to assess thetietec

a maximum 0f99.4% Rank-5 identification accuracy can be'€Ss Of the proposed network under different image quality

achieved for the UTEVP database. conditions, with minimum human intervention. It can also be
seen that the identification accuracy of the proposed n&twor
VII. CONCLUSIONS significantly increases with the employed number of trajnin

In this paper, we have proposed a CNN-based finger-véinages. Moreover, if the finger-vein images are not acquired
identification system which can perform an effective idénti with the same illumination intensity and ambient lighting
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conditions for different sessions of acquisition, then tise
of multiple session’s data for training can be consideredras
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