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Convolutional Neural Network for
Finger-Vein-based Biometric Identification

Rig Das, Emanuela Piciucco, Emanuele Maiorana, and Patrizio Campisi,

Abstract—The use of human finger-vein traits for the purpose
of automatic user recognition has gained a lot of attention in the
recent years 1. Current state-of-the-art techniques can provide
relatively good performance, yet they are strongly dependent
upon the quality of the analyzed finger-vein images. In this
paper, we propose a convolutional-neural-network-based finger-
vein identification system and investigate the capabilities of the
designed network over four publicly-available databases.The
main purpose of this work is to propose a deep-learning method
for finger-vein identification, able to achieve stable and highly-
accurate performance when dealing with finger-vein images of
different quality. The reported extensive set of experiments show
that the accuracy achievable with the proposed approach cango
beyond 95% correct identification rate for all the four considered
publicly-available databases.

Index Terms—Convolutional neural network, finger-vein, bio-
metrics, identification.

I. I NTRODUCTION

T HE design of efficient biometric identification systems,
measuring unique physical or behavioral characteristics

of individuals for their secure recognition, is nowadays a
challenging and relevant task for both the scientific and the
industrial communities. Commonly employed physical bio-
metric traits include face, hand geometry, fingerprint, andiris
among the others, whereas signature, voice, keystroke pattern,
and gait are examples of behavioral modalities. As most of
these modalities are prone to spoof attacks [1], [2], there is
a high growth in demand for more user-friendly, yet secure,
biometric modalities such as finger vein [3], hand vein [4] and
palm vein [5], since they are harder to forge and difficult to
acquire without the users’ willingness. Vein images are usually
captured using near-infrared-based optical imaging system.
The illumination system is composed by infrared light that
either passes through the hand, or it is reflected by it. Vein
patterns are then acquired through an infrared camera and,
since the haemoglobin in the blood absorbs infrared light, they
appear as dark lines in the acquired image [6].

Despite the recent advances in finger-vein-based biomet-
ric recognition, finger-vein extraction approaches still remain
broadly categorized into four sets such as vessel extraction
[3], [6]–[10], subspace-learning-based approaches [11]–[15],
statistical-based techniques [16]–[18], and local-invariant-
based methods [19]–[22]. The vessel extraction technique
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relies on the fact that a vein pattern can be seen as a network of
dark lines on a brighter background. Veins can be segmented
and extracted as line-like structures [3], [6], [23], as curvature
[7], [8], or minutiae [9], [10]. Vein patterns are also recognized
using various thresholds, depending on neighborhood number,
tracking times, and curvature values. Feature extraction tech-
niques based on subspace learning exploit appearance-based
methods, such as principal component analysis (PCA) [11],
[12], two-dimensional PCA [13], [14] or linear discriminant
analysis (LDA) [15], and consider the subspace coefficients
as discriminative characteristics. Global or local statistical
information such as the local binary histogram and invariant
moments are employed by the statistical-based approaches.
Local binary pattern (LBP) [16], [17] and local derivative
pattern (LDP) [18] are examples of local-statistics-basedmeth-
ods, while the use of invariant moments is an instance of
global statistics [24]. Finally, local-invariant-based methods
are inspired by approaches stemming from computer vision.
A typical application of these techniques is with the usage
of key points for the scale invariant feature transform (SIFT)
[19], [20].

Most of the current state-of-the-art models suffer from
some shortcomings, mainly related to the associated feature
extraction approaches. For example, some of the existing
methods do not perform well on low-quality images, which can
be originated by poor quality infrared light, ambient lighting
conditions, light scattering in imaging finger tissues [21],
fat finger, cold weather or poorly designed image capturing
devices [22]. Besides that, most of the algorithms relies on
parameters that cannot be set as standard values and may
change while considering different databases. Moreover, for
segmentation-based methods, as well as for techniques based
on statistics, finger rotation and translation have a negative
impact on recognition performance.

In order to overcome such limitations, in this paper we pro-
pose to perform finger-vein-based identification by exploiting
deep-learning techniques. Deep learning is mainly inspired by
the human brain and typically uses a multilayer perceptron
(MLP) algorithm for classification. Deep-learning methods
such as convolutional neural networks (CNNs) consist of a
number of convolutional and sub-sampling layers producing
a fully connected layer, which in turn can be used as a
robust feature extractor and classifier module. The aim of
our work is to achieve good and stable identification per-
formance irrespective of the quality of the considered finger-
vein images, their rotation, translation, and scaling. In order
to verify the effectiveness of the designed CNN, we have
tested our approach over four publicly-available finger-vein
databases, characterized by different image quality levels. The
achieved performance shows that the proposed method is able
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TABLE I: Details of publicly-available finger-vein image databases.

Database Subjects No. of Fingers Details of Fingers
Images

Sessions Image Size Total Images
per Finger

HKPU [3] 156 2 Left hand index & middle finger 12 2 513 × 256 3132

FV-USM [25] 123 4 Left & right hand index & middle finger 12 2 640 × 480 5904

SDUMLA [26] 106 6 Left & right hand index, middle & ring finger 6 1 320 × 240 3816

UTFVP [27], [28] 60 6 Left & right hand index, middle & ring finger 4 2 672 × 380 1440

to guarantee stable and highly-accurate identification results,
irrespective of the quality of the considered finger-vein images.
Additionally, the proposed CNN-based identification system
requires negligible manual effort for feature selection. In fact,
it has been applied without variations to all the four considered
databases, without using any application-dependent threshold
or any manually-set parameter.

This paper is organized as follows: a detailed description
of the four publicly-available finger-vein databases considered
in most of the related literature is first provided in Section
II. These datasets are exploited here in the experimental tests
to facilitate reproducible research and future comparisons.
Section III then provides a brief overview of state-of-the-
art techniques specifically designed for finger-vein-basedbio-
metric recognition, identification, and verification scenarios
separately, while deliberately focusing on approaches tested
over the aforementioned four publicly-available databases. In
addition, an overview of existing works exploiting CNNs in the
field of finger-vein-based biometric recognition is also given.
Section IV presents the topology of the adopted CNN, while
Section V details the proposed finger-vein-based biometric
identification system. Section VI then discusses about the
obtained experimental results, while conclusions are eventually
drawn in Section VII.

II. F INGER-VEIN DATABASES

The effectiveness of our proposed CNN-based identifica-
tion system is evaluated on four publicly-available finger-
vein databases, namely the Hong Kong Polytechnic Univer-
sity (HKPU) [3], the University Sains Malaysia (FV-USM)
[25], the Shandong University (SDUMLA) [26], and the
University of Twente Finger Vascular Pattern (UTFVP) [27],
[28] database. The primary reason for using these specific
databases is because most of the existing finger-vein-based
recognition methods have been evaluated over one or more of
these databases, and a fair comparison with these established
methods can be therefore given. An overview of the four
considered databases is given in Table I, and the following
subsections provide more details about them.

1) HKPU database:The HKPU finger-vein image database
[3] consists of images from156 male and female volunteers. It
has been acquired between April 2009 and March 2010 using
a contact-less imaging device at the Hong Kong Polytechnic
University campus. It is composed by3132 images from the
156 subjects, all of them in BMP format with a resolution of
513 × 256 pixels. In this dataset about93% of the subjects
are younger than30 years, and finger-vein images from105
subjects have been acquired in two separate sessions with a
minimum interval of one month and a maximum of over six

months, with an average of66.8 days. In each session, every
subject has provided6 image samples from index and middle
finger of the left hand. Other51 subjects have one single
session of acquired data.

2) FV-USM database:The FV-USM database [25] is from
University Sains Malaysia. It consists of left and right hand
index and middle fingers’ vein images from123 subjects.
Among them,83 are male and40 female, with an age range
of 20− 52 years. Images have been acquired in two different
sessions with six images per finger in every session. All images
are in gray level BMP format with a resolution of640× 480
pixels.

3) SDUMLA database:The SDUMLA database [26] has
been collected by Shandong University of China. It contains
finger-vein images of636 fingers from 106 subjects. Six
images have been acquired from each of the left and right
hand’s index, middle and ring fingers in gray level BMP format
with a resolution of320× 240 pixels.

4) UTFVP database:The UTFVP database [27], [28] has
been collected by the University of Twente, Netherlands. It
consists of1440 PNG images with672×380 resolution, taken
from 60 subjects. Images have been acquired in two sessions
from 6 fingers, i.e., left and right hand’s index, middle and ring
fingers, with every finger registered twice in each acquisition
session. The images have a density of126 pixels/cm and the
width of the visible blood vessels is4− 20 pixels [29].

III. STATE-OF-THE-ART:
FINGER-VEIN PATTERNS AND BIOMETRICS

A relevant number of state-of-the-art finger-vein based bio-
metric approaches are tested on in-house datasets, thus making
it difficult to have a fair comparison with newly proposed
method. Moreover, a significant performance variability can be
often encountered when applying state-of-the-art approaches
to different databases, especially if low-quality finger-vein
images are present. For example, although the maximum-
curvature-based (MC) approach proposed by Miura et. al [8]
reaches a remarkable equal error rate (EER) of0.0009%
when applied over an in-house finger-vein database [8], its
performance goes to a low correct identification rate (CIR)
of 65.40% when the same algorithm is applied to the HKPU
database [3]. A similar situation happens when the repeated
line tracking (RLT) feature extraction algorithm is taken into
account. In fact it leads to an EER of0.145% using the
settings proposed in [6], while only a CIR of79.52% is
obtained when the same method is applied to the HKPU
finger-vein images. Performing tests on different large public
databases and comparing the achieved results with state-of-
the-art methods evaluated on the same datasets, is therefore of
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TABLE II: State-of-the-art for finger-vein-based biometric identification.

Paper Database Subjects Feature Extraction Method Classifier Performance

Kumar et al. [3] HKPU 105 Gabor filter with morphological processing X-OR based similarity score CIR=90.08%

Liu et al. [10] HKPU 156
SVD based minutiae extraction Fusion of Euclidean and

CIR=95.71%
LEBP based false removing Hamming Distance

Van et al. [30] SDUMLA 106 MFRAT [31] & GridPCA Euclidean distance CIR=95.67%

Lu et al. [32] SDUMLA 106 Polydirectional Local Line Binary Pattern Histogram intersection CIR=99.21%

Ong et al. [33] SDUMLA 106 Minutiae
Genetic algorithm &

CIR = 99.7%
k-modified Hausdorff distance (k-MHD)

Qui et al. [34]
SDUMLA 106 Dual-sliding window localization+

Euclidean distance
CIR=97.61%

FV-USM 123 Pseudo-elliptical transformer+ 2D-PCA CIR=97.02%

Xie et al. [35] SDUMLA 106
Block-based average absolute Ensemble component-based extreme

CIR=97.76%
deviation (AAD) features learning machines (EC-ELM) network

Banerjee et al. [36] SDUMLA 106
Images, after Fuzzy contrast enhancement Affine registration based template

CIR=90.72%
+ CLAHE + directional dilation (DD) matching algorithm (ARTeM)

paramount importance for properly assessing the effectiveness
of a proposed method.

In this regard, an overview of state-of-the-art finger-vein
based biometric recognition systems tested over the publicly-
available databases are described in Section II. Specifically,
since identification and verification have different performance
indicators, works related to these two modalities are discussed
separately in Section III-A and III-B, respectively. Addition-
ally, since we propose the adoption of CNNs to perform
finger-vein-based biometric identification, an overview ofthe
applications of CNNs in the field of biometric recognition
using finger-vein patterns is given in Section III-C. In more
detail, both approaches that uses CNNs as classifiers for
biometric recognition purposes as well as those exploiting
CNNs for tasks such as spoofing detection, image quality
assessment, and vein segmentation, are discussed. A detailed
explanation of the pros and cons of our proposed method over
state-of-the-art approaches is provided in Section IV-C.

A. Finger-Vein Biometric Identification

Gabor filters with morphological processing have been used
in [3] for feature extraction, with XOR-based similarity scores
used for finding similarity between images and achieving a
CIR of 90.08%. Liu et al. in [10] have used HKPU database’s
session-1’s data for their system, while discarding session-2’s
biometric traits. Singular value decomposition (SVD) has been
used for minutiae extraction, and local extensive binary pattern
(LEBP) has been employed for removing false pairs. An accu-
racy of95.71% has been achieved fusing Euclidean and Ham-
ming distances of the compared templates. Van et al. in [30]
have used the modified finite Radon transformation (MFRAT)
[31] for discriminant orientation feature extraction overthe
SDUMLA dataset. GridPCA [39] has also been applied to
remove further redundant information. Enlarging-training-set
(ETS)-based comparison techniques [31] have been employed
for overcoming translations thus achieving a CIR=95.67%
by calculating Euclidean distances between test and training
templates. In [32], authors have proposed a polydirectional
local line binary pattern (PLLBP) method for extracting vein

line patterns in any orientations. The discriminative ability
of LLBP (local line binary pattern) [40] histograms from
different orientations has been first exploited, with histogram
intersection then employed to measure the similarity between
two histograms, using a score-level fusion to provide the final
similarity score. A CIR of99.21% has been achieved for the
SDUMLA database. Ong et al. have proposed a reliable two-
stage multi-instance finger-vein identification system based
on minutiae comparison [33]. For their research work, they
have used the SDUMLA dataset and combined minutiae
features extracted from multiple instances of finger veins.A
genetic algorithm (GA) [41] has been used to select the most
reliable minutiae points from the feature point pool-set. AK-
modified Hausdorff distance (k-MHD) [42] has been employed
to evaluate the closet point set of two minutiae templates for
comparison. An identification rate of99.7% has been achieved
for a not-specified number of employed training images. Qui
et al. in [34] have used dual-sliding window localization and
pseudo-elliptical transformation, with a two-dimensional prin-
cipal component analysis (2D-PCA) to project the transformed
image for feature extraction. Euclidean distance has been
used for measuring similarity between training and testing
images. A CIR of97.61% over the SDUMLA database and an
accuracy of97.02% is obtained for the FV-USM database. In
[35], the authors have tested feature-component-based extreme
learning machines (FC-ELMs) over the SDUMLA database,
with enrollment sets of either3 or 5 randomly-selected images
are employed for training of each individual’s. Features have
been extracted by a guided filter using the eight block-
based average absolute deviation (AAD) directional features
from high-quality finger-vein contours without performing
segmentation. An ensemble component-based ELM network
(EC-ELM), which averages the eight FC-ELM outputs, has
been employed for final decision. The best identification
results have been obtained using 5 images for training, with
a corresponding average accuracy of97.76 ± 0.048%. For
the same{5-1} strategy of SDUMLA database, Banerjee et
al. in [36] have obtained an average percentage of correct
classification (PCC) of90.72%, using affine-registration-based
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TABLE III: State-of-the-art for finger-vein-based biometric verification.

Paper Database Subjects Feature extraction methods Classifier Performance

Gupta et al. [37] HKPU 105 Variational approach for vein extraction
Overlapping pixels between

EER = 4.47%
registered and binarized templates

Xi et al. [38] HKPU 105 Discriminative binary codes (DBC) SVM EER = 1.44%

Bakhtiar et al. [25] FV-USM 123
Modified Gaussian Filter (MGF) enhanced Band Limited Phase Only Correlation

EER = 2.34%
& displacement corrected images (BLPOC)

Yang et al. [22]
HKPU 105 Anatomy Structure Analysis based

Elastic Matching
EER = 0.38%

SDUMLA 106 Vein Extraction(ASAVE) EER = 1.39%

Ton et al. [28] UTFVP 60 Maximum curvature Correlation based comparison EER = 0.4%

Kauba et al. [29] UTFVP 60 Different feature level fusion Correlation based comparison EER = 0.19%

template matching (ARTeM) algorithms. For their proposed
method, the authors have first selected the region of interest
(ROI) and, then, fuzzy contrast enhancement and contrast
limited adaptive histogram equalization (CLAHE) have been
performed, along with an average filtering and directional
dilation (DD).

Table II reports a summary of the recent state-of-the-art
finger-vein-based biometric identification techniques. Itcan
be noted that most of these techniques have been tested on
either one or maximum two publicly-available databases. A
comprehensive testing of a proposed method on all the four
major publicly-available databases, to prove its effectiveness
under different conditions of available image quality, is still
missing in state-of-the-art literature.

B. Finger-Vein Biometric Verification

Although our study focuses on biometric identification, we
also provide an overview of the most relevant contributionson
finger-vein-based verification systems. With the same rationale
adopted in Section III-A, we explicitly review only papers
tested on one or more databases out of the four publicly-
available ones mentioned in Section II. The details of the
reported works are summarized in Table III.

Gupta el al. [37] have used a fusion strategy named varia-
tional approach to combine enhanced vein images obtained
from both multi-scale matched filtering and line tracking.
Similarity scores have been obtained by first registering the
two vein images to be compared and then computing the
number of overlapping binary pixels between them. For their
proposed method, the authors have been able to achieve an
EER of 4.47% for index and middle finger combination,
over the HKPU database. Xi et al. [38] have proposed a
discriminative binary codes (DBC) learning method, building
subject relation graph to capture correlations among subjects
and, based on that, generating binary templates according to
the graph transform. The distance between templates from
different subjects has been maximized during the graph trans-
form in order to ensure that templates are discriminative and
representative. Eventually, support vector machines (SVMs)
have trained as code learners for each bit. The proposed
algorithm has obtained an EER of1.44% on the HKPU
database. Bakhtiar et al. [25] have enhanced finger-vein im-
ages of the FV-USM database using modified Gaussian filter

(MGF) [52] and then correcting the image displacements.
Band-limited phase only correlation (BLPOC) [53] has been
used for measuring the similarity between registered and test
images as it is resilient to noise, occlusions and rescaling
factors. An EER of2.34% has been achieved for unimodal
finger veins. In [22] authors have used anatomy-structure-
analysis-based vein extraction (ASAVE) and elastic matching,
achieving an EER of0.38% and 1.39% for the HKPU and
SDUMLA databases respectively. In [28] and [29] authors
have used maximum-curvature-based feature extraction and
different feature level fusion techniques to achieve EERs of
0.4% and0.19%, respectively, over the UTFVP database.

C. CNNs in Finger-Vein Scenario

In recent years, applications of deep-learning-based meth-
ods, such as CNN, have been introduced in vein-based recog-
nition scenarios, as summarized in Table IV.

Biometric identification using CNN has been studied by
Radzi et al. in [43]. The employed network is based on the one
proposed in [54], in which convolution and sub-sampling lay-
ers are fused into one layer, resulting in a reduced-complexity
four-layer CNN. The CNN inputs are binary images obtained
by thresholding the ROI of original finger-vein images. The
proposed system has been tested on an in-house dataset.

Hong et al. in [44], exploited a pre-trained model of VGG-
Net-16 [55] in order to perform biometric verification based
on finger veins. VGG-Net-16 is composed of 13 convolutional
layers, 5 pooling layers, and 3 fully-connected layers. The
CNN pre-trained model has been fine-tuned with training
images consisting of the differences between two finger-
vein images. Experiments are performed on three different
databases, namely the SDUMLA database and two other
non-publicly-available datasets. Huang et al. [45] have pro-
posed DeepVein, a finger-vein verification method based on
a deep CNN (D-CNN) architecture inspired by the VGG-
Net-16 model, and modified by removing some layers and
reducing the number of filters in some convolutional layers.
The resulting network consists of 26 layers: 10 convolutional
layers, 4 pooling layers, and 2 fully-connected layers. The
network is fed with two templates merged into a 2-channel
image. Training and validation are carried out using a dataset
collected by the authors, and three different publicly-available
databases are used for testing.
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TABLE IV: State-of-the-art for applications of CNN in the field of finger-vein-based biometric recognition.

Paper Database # Finger Classes CNN Aim Performance

Radzi et al. [43] Own 300 (50 users) Biometric Identification CIR = 100%

Hong et al. [44]

Own (Good Quality) 120 (20 users)

Biometric Verification

EER =0.804%

Own (Middle Quality) 198 (33 users) EER =2.967%

SDUMLA (Low Quality) 636 (106 users) EER =6.115%

Huang et al. [45]

Own (Training) 300.000

Biometric Verification

-

FVRC2016 - DS1 [46] (Testing) 1000 EER =0.42%

FVRC2016 - DS2 [46] (Testing) 1000 EER =1.41%

FVRC2016 - DS3 [46] (Testing) 1000 EER =2.14%

Finger video [47] 300 (100 users)
PAD - Inkjet printed artefact APCER = 3.48%

Raghavendra PAD - Laserjet printed artefact APCER = 0.00%

et al. [48]
Finger images [49] 300 (100 users)

PAD - Inkjet printed artefact APCER = 3.20%

PAD - Laserjet printed artefact APCER = 0.40%

Qin et al. [50]
FV-USM 492 (123 users)

Finger-vein image quality assessment
EER = 0.80%

HKPU 302 (156 users) EER = 2.33%

Qin et al. [51]
FV-USM 492 (123 users) Finger-vein segmentation EER = 1.42%

HKPU 302 (156 users) and recovery EER = 2.70%

CNNs have been applied to finger-vein images in other
works, although not explicitly for biometric classification
purposes. Specifically, Raghavendra et al. [48] have proposed
a finger-vein presentation attack detection (PAD) algorithm
based on a D-CNN inspired by Alex-Net [56], yet with seven
additional layers. The D-CNN model has been fine-tuned with
finger-vein presentation attack samples. A majority voting
rule has been exploited to classify images as either bona-
fide or artefact. Two different attack databases have been
taken into account for carrying out the experiments, with the
proposed scheme able to guarantee high performance on both
of them, improving the achievable results in comparison to
other existing PAD methods. Qin et al. [50] proposed a deep
neural network (DNN) consisting of three convolutional layers,
three max-pooling layers, two fully-connected layers, anda
softmax layer, to predict the quality of finger-vein images
to be used in a biometric verification system. Specifically,
the network’s aim is to automatically label low- and high-
quality images. Assuming that low-quality images are likely
to yield more false non-matches, the authors have studied the
impact on recognition performance of considering only images
classified with high quality by the proposed DNN, while lever-
aging on state-of-the-art algorithms for feature extraction and
comparison of finger-vein patterns [3]. Two publicly-available
databases have been considered, with the proposed model
outperforming the existing quality assessment approaches. Qin
et al. have also proposed a deep learning model to extract
and recover vein features. Specifically, their CNN has been
exploited to segment vein pixels from the background, by
predicting the probability of a pixel to belong to a vein
pattern. The proposed CNN consists of two convolutional
layers, two max-pooling layers, two local normalization layers,
one fully-connected layer, and a softmax layer. Besides that, an
approach for recovering vein patterns in the extracted finger-

vein images, relying on a fully convolutional network (FCN),
has been also proposed. The FCN consists of four layers:
an input layer, two convolutional layers, and an output layer.
The strategy adopted to compare either the features extracted
through the CNN, or the ones obtained after the recovering
procedure, is based on the computation of the amount of
overlap between templates. Experimental results on two public
finger-vein databases have shown an improvement in terms of
finger-vein verification accuracy.

Table-V summarizes the details of the CNNs exploited in
the aforementioned works. A detailed comparison among them
and the network here proposed for finger-vein-based biometric
identification is provided in Section IV-C, after the detailed
description of our proposed CNN architecture.

IV. CONVOLUTIONAL NEURAL NETWORK & T OPOLOGY

In this section details of the employed CNN in the proposed
finger-vein-based biometric identification system are given.

A. Convolutional Neural Network

A CNN is a multilayer perceptron (MLP) network with a
special topology containing more than one hidden layer [56].
CNNs are primarily used for object recognition in image pro-
cessing, handwritten character recognition and speech recog-
nition, as they automatically extract discriminative features
inside their layers from raw input information, without any
specific normalization. This kind of model is advantageous
for input data with an inner structure like images, and where
invariant features have to be discovered. One of the main
interest for using CNNs is to avoid hand-designed input
features, which may not have been derived by considering the
general problems. Following subsections will provide detailed
description of different layers of a CNN.
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TABLE V: State-of-the-art CNN architectures used for finger-vein-based biometric recognition.

Paper Input size Conv layers Kernel size Pooling layers FC layers Loss function Reference CNN Learning rate

Radzi et al. [43] 55 × 67 × 1 4 7 × 7 2 2 Mean square error [54] 0.001

Hong et al. [44] 224 × 224 × 3 13 3 × 3 5 3 softmax VGG-16 [55]

0.00001

0.0001

0.0005

Huang et al. [45] 128 × 128 × 2 10 3 × 3 4 2 Cross entropy error VGG-16 [55] 0.01

224 × 224 × 3 8

11 × 11

3 softmax Alex-Net [56]

0.00001

Raghavendra 5 × 5 2 + 3 0.0001

et al. [48] 3 × 3 (extra) 0.001

0.01

Qin et al. [50] 80 × 240 × 1 4
5 × 5

3 2 softmax - 0.0002

3 × 3

Qin et al. [51]

15 × 15 × 1 3
5 × 5

2 2 softmax -
0.0002

3 × 3 0.01

39 × 146 × 1 2
9 × 9

0 1 Mean square error -
0.0001

5 × 5 0.01

Proposed 65 × 153 × 1 5 5 × 5 3 1 softmax - 0.00001

1) Convolutional Layer:A set of two-dimensional convo-
lutions is performed in the convolutional layer between the
input mapsxl

m, with l andm being respectively the level and
map indexes, and the filters represented through the kernels
wl

n,m, being n the filter index. Then-th output mapyln of
layer l is computed as:

yl
n =

M
l−1∑

m

wl
n,m ∗ xl

m+ b
l
n (1)

whereM l−1 is the number of input maps,∗ denotes convo-
lution, andbln is the bias of then-th output map in thel-th
level. The values characterizing the kernels and the biasesare
set according to [57].

2) ReLU: The rectified linear unit (ReLU) is a nonlinear
layer (or activation layer) which is usually applied immediately
after the conv layer described by (1). The purpose of this
layer is to introduce nonlinearity in the system. In the past,
nonlinear functions liketanh andsigmoid have been used, but
researchers have found out that ReLU layers work far better,
allowing networks to be trained faster without scarifying the
accuracy. It also helps to alleviate the vanishing gradient
problem, an issue making the lower layers of the network
to be trained very slowly due to the exponential decrease of
the gradient through the layers. The ReLU layer applies the
function f(y) = max(0, y), changing all negative activations
to 0. This layer increases the nonlinear properties of the model
and the overall network, without affecting the receptive fields
of the conv layer.

3) Pooling: Pooling layer is also referred to as a down-
sampling layer. Maxpooling is the most popular layer option.
It takes a filter, normally of size2 × 2, and a stride of
the same length. It is then applied to the input volume and
outputs the maximum value in every subregion that the filter
convolves around. Average pooling and L2-norm pooling are
other options for pooling layers. The intuitive reasoning behind

this layer is that once we know that a specific feature is in
the original input volume.i.e. high activation value, its exact
location is not as important as its relative location to the other
features. This layer drastically reduces the spatial dimension
of the input volume. As a consequence, the amount of pa-
rameters or weights is significantly reduced, thus loweringthe
computation cost and controlling over-fitting.

4) Fully Connected Layer:This layer takes the output of
the preceding conv or pool layer or ReLU and generates an
N dimensional vector, whereN is the number of classes
that the program has to choose from. A softmax classifier
is typically employed to predict the probability of the input
image belonging to a specific label. Letxm be them-th input
map of the output layer, then the linear combinationOn is
defined as:

On =

M∑

m=1

(wn,m ∗ xm + bn), (2)

whereM = 1024 in our case as shown inL5M3R1 of Fig. 1. A
fully connected layer looks for some high level features which
are strongly correlated to a particular class, by computing
probabilities for the available classes. The probability distri-
bution of the input data over C different classes is predicted
by the softmax function:

pu =
exp (Ou)

C∑
n=1

exp (On)

. (3)

B. Network Topology

The CNN we have proposed is shown in Figure 1. The
network has 5 convolutional layers, 3 max-pooling, 1 ReLU,
and a softmaxloss layer. The detailed topology is describedas
follows:

• L0: the input layer with an input data size of[65× 153],
which is the size of input images of finger veins. A
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Fig. 1: Employed CNN architecture.

detailed description of how input data are processed to
get to this size is provided in Section V-A and V-B;

• L1M1: first hidden layer, composed by153 convolutional
filter of size [5 × 5 × 1] and a max-pooling (MP) layer
of size [2 × 2]. This layer transforms the input data
into CL1M1 = [30 × 74 × 153] low-level features after
convolving and down-sampling;

• L2M2: second hidden layer, composed by512 conv filter
of size[5×5×153] and a max-pooling layer of size[2×2].
This layer transforms the first hidden layer’s output into
CL2M2 = [13× 35× 512] features;

• L3M3: third hidden layer, composed by768 conv filter
of size [5 × 5 × 512] and a max-pooling layer of size
[2 × 2]. This layer transforms the second hidden layer’s
output intoCL3M3 = [4× 15× 768] features;

• L4M3R1: the fourth hidden layer is composed by1024
convolutional filter of size[4 × 15 × 768] and a ReLU
layer. This layer changes the previous layer’s activation
map into aCL4M3R1 = [1× 1× 1024] feature map;

• L5M3R1: the final hidden layer, or fully connected layer,
is produced by convolving the previous layer’s activation
map withU convolutional filters of size[1×1×1024]. The
U neurons of this layer represent theU classes/subjects.
This layer generates a fully connected network with the
input data and produces the probabilities of its belonging
to one of theU classes. Softmaxloss function is used as
loss function for back-propagation.

Table-VI shows the configuration details of our proposed
CNN with kernel size, number of stride, and padding.

C. Comparison with state-of-the-art CNNs used for finger-
vein images

As shown in Table-V, most state-of-the-art CNN archi-
tectures applied to finger-vein images require square inputs,
as VGG-16 or Alex-net. Native biometric traits are instead
typically acquired according to a rectangular shape, therefore
implying the need for severe resizing operations, which can
distort original features and loose vital information. Ourpro-
posed CNN instead takes input images of size65× 153× 1,
therefore reducing the chances of distortions.

Moreover, very small kernels are used in approaches such
as [44] and [45], therefore increasing the number of required
conv layers and pooling layers, and resulting in longer time
for training and testing. As our input image size is fixed into

65× 153 along with the kernel of size5 × 5, we are instead
required of a total5 conv layers and3 max-pooling layers
to dissolve the input image into a fully connected layer. This
significantly reduces the training and testing time, and also
increases the identification accuracy. Moreover, our learning
rate is fixed into a very low value of0.00001, that entails a
very deep training and results into a very low testing error.

More importantly, the only work that has investigated so
far the possible use of CNN for finger-vein-based biometric
identification is [43], where the authors have used input images
of size 55 × 67 with kernel size of7 × 7. This means that,
with every convolution, a very large block of information
is processed, with a potentiality of leading into a very fast
training saturation and a consequent high variability for the
testing results. Also, there remains a high possibility of loosing
some minute feature details of the finger-vein while training
and testing. The results reported in [43] are also very hard to
replicate, since they have been obtained from a small in-house
dataset containing 50 subjects.

In summary, it can be stated that the advantages of the
proposed CNN over the current state-of-the-art CNN archi-
tectures are in the use of more realistic input image size, with
optimized kernel size that reducing the training and testing
time and a very low learning rate for performing a very deep
training, thus significantly lowering the testing error.

V. EMPLOYED FINGER-VEIN BASED BIOMETRIC SYSTEM

Once finger-vein data are preprocessed, the corresponding
templates are generated as described in Section V-B. The
performed training and identification phases are describedin
Section V-C and V-D, respectively.

A. Preprocessing

The original images, gathered from four publicly-available
databases, are pre-processed for ROI extraction and image
enhancement. As a first step, the images from all the con-
sidered databases, having different sizes, are subsampledto
336 × 190 pixels in order to guarantee uniformity. Beside
that, for the databases where the images show a ratio between
number of rows and columns different from the target one,
marginal background parts are removed by selecting a central
area of the image. Eventually, the ROI, i.e. the part of the
image which contains the interested finger, is then extracted
and a binary mask in which the white pixels correspond to
the finger region is obtained. Specifically, the ROI extraction
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TABLE VI: Proposed CNN configuration.

Layer Type Number of Filter Size of Feature Map Size of Kernel Number of Stride Number of Padding

Image input layer - 65 × 153 × 1 - - -

CL1 (Convolutional layer-1) 153 65 × 153 × 1 5 × 5 1 × 1 0 × 0

M1 (Max-Pooling Layer-1) 1 61 × 149 × 153 2 × 2 2 × 2 0 × 0

CL2 (Convolutional layer-2) 512 30 × 74 × 153 5 × 5 1 × 1 0 × 0

M2 (Max-Pooling Layer-2) 1 26 × 70 × 512 2 × 2 2 × 2 0 × 0

CL3 (Convolutional layer-3) 768 13 × 35 × 512 5 × 5 1 × 1 0 × 0

M3 (Max-Pooling Layer-3) 1 9 × 31 × 768 2 × 2 2 × 2 0 × 0

CL4 (Convolutional layer-4) 1024 4 × 15 × 768 4 × 15 1 × 1 0 × 0

R1 (ReLu Layer-1) - 1 × 1 × 1024 - - -

CL5 (Convolutional layer-5) U (number of classes) 1 × 1 × 1024 1 × 1 1 × 1 0 × 0

Softmax Layer - U × 1 - - -

(a) Masks for detection of upper region of finger (b) Masks for detection of lower region of finger

Fig. 2: Masks for ROI selection of finger-vein images.

is based on the method proposed by Lee et al. [16], where
two different masks, as shown in Figure 2, are used to extract
the upper and lower finger’s edges respectively. For the HKPU
database the aforementioned masks are provided, whereas the
aforementioned procedure is applied to the other databases.
Starting from the extracted edges and masks, a normalization
step is performed in order to compensate rotation and vertical
translation during the acquisition step. In our work, we usethe
approach proposed in [58], which attempts to fit a straight line
between the edges detected in the previous step and estimate
the parameters of rotation and vertical translation which are
later used to perform an affine transformation. If required,the
normalized images may be then enhanced through contrast
limited adaptive histogram equalization (CLAHE) [59], which
is an adaptive histogram equalization (AHE) method whose
aim is to improve the contrast of the image by limiting
the contrast amplification in the different considered parts of
the image. The preprocessed images are then transposed and
resized into65× 153 pixels.

Figure 3 shows a comparison of the final images with and
without performing the CLAHE enhancement for the four
different databases.

B. Template Generation

Bigger images usually lead to a larger CNN with more
hidden layers. Hence, in order to have a feasible size network,
the images are first resized into65 × 153. In our approach,
the training and testing templates of our network are either
generated by selecting the images from a single session, as
proposed by existing state-of-the-art methods, or by selecting
a combination of images from all available sessions. The
reason behind this latter strategy is that, as can be seen from
Fig. 4, the same data can be acquired in different sessions

under diverse illumination conditions. Hence, the networkmay
require images captured in different settings for its proper
training, in order to not to affect the identification accuracy.
To find the best combination of templates for training, we
have investigated1, 2, 3, and4 images’ combinations from all
available sessions for training. The obtained results allowed us
to find the best possible combination of templates to be used
for person identification.

C. CNN Training

The generated templates are passed through the designed
CNN and a set of very low-level features are extracted in
the first hidden layer. The network gradually builds up over
these low-level features in the subsequent convolutional layers,
in order to create a set of high-level features for the fully
connected layer.

For our experiments we have considered each finger of every
person as a separate class. For the HKPU dataset, since105
subjects have contributed with their index and middle fingers
to two sessions, there is a total of210 classes available for
training. The remaining51 subjects have contributed only to
session 1, so they have not been considered for training in our
tests and they have been instead only used as imposters while
testing. Similarly, for FV-USM database we have considered
492 classes (123 subjects with4 fingers each),636 classes
for the SDUMLA database (106 subjects with6 fingers each),
and360 classes for the UTFVP database (60 subjects with6
fingers each).

For CNN designing and training we have used the
MatConvNet-1.0-beta24 tool [60]. For training purposes90%
finger-vein images are considered, with the remaining10%
used for validation. The learning rate of the CNN is set at
0.00001 with a batch size of3 samples for HKPU and FV-
USM, 4 for SDUMLA and2 for UTFVP, so that the loss can
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Original EnhancedOriginalEnhanced Original EnhancedOriginalEnhanced

(a) HKPU (b) FV-USM (c) SDUMLA (d) UTFVP 

Fig. 3: Original and CLAHE [59] enhanced finger-vein image from four publicly-available databases.

(a) HKPU (b) FV-USM (c) SDUMLA (d) UTFVP 

Session-1

Session-2 -

Fig. 4: Different luminosity images from different sessions of
four publicly-available databases.

be minimized with higher precision through the execution of
every epoch or iteration. As for the number of epochs, higher
numbers usually allow the network to be well-trained, so that
the weights of different layers are updated with precision.For
our experiment, we have considered2500 epochs for all the
experiments. The main purpose of using such a low learning
rate and high number of epochs is that it is typically preferable
to let a network learn very slowly and converge into the
smallest details of every class.

D. Identification

In the identification stage, the testing templates are gen-
erated as described in Section V-B from the remaining im-
ages. For each testing sample, the trained CNN returns a
probability value for all the available classes/fingers. The
maximum probability value identifies the most similar finger
to the testing sample. As we have considered each and every
finger of an individual as a different class, we are able to
identify the particular finger with which it is matched and the
corresponding subject to whom it belongs to.

It is worth specifying that, similar to what has been pro-
posed in [3], for our experimental setup we have introduced
a threshold for matching probability of a test image, below
which we consider the test image as “not-identified”. This is
for the purpose of genuine imposter testing where no sample
images are trained for that particular subject, as they are not
associated with any of the enrolled identities. For a given
testing sample, if the matching probability value returnedby
the proposed network is less than50% for its comparisons
with any trained class, then that test image is classified as
“not-identified” or “not-present” in the database. For example,
we have tested this scenario with the finger-vein images of
the51 subjects captured during a single session in the HKPU
dataset. Such images have not been ever employed for training
purposes and have been instead used only as testing probes.
Each time, when a test sample’s result reaches into a maximum
matching probability value of lower than50% for all the

trained classes, then it is possible to declare them as ”not-
identified”.

VI. RESULTS& D ISCUSSION

In order to evaluate the proposed network, we have first
compared its performance with several state-of-the-art iden-
tification techniques in Section VI-A, by using the training
and testing strategies adopted in referenced papers for our
proposed network as well.

We have then designed an optimal training strategy for
our proposed network in Section VI-B. Most of the state-of-
the-art techniques have used either a single image or images
from a single session for their network’s training, which may
not be ideal for our CNN-based approach. It is in fact well-
known that the availability of a single sample of every class,
here individual fingers, does not allow a CNN to get trained
properly.

Eventually, we have also evaluated the utility of exploiting
image enhancement preprocessing techniques together with
the proposed network in Section VI-C, to understand if further
performance improvement could be achieved.

All the experiments have been performed in MATLABR©

(R2017a) with a system configuration of64Gb RAM; Ti-
tan XTM(Pascal) graphics card; i7,3.40GHz processor and
WindowsR© 10 operating system.

A. Performance Comparisons

The identification accuracies achieved by the state-of-the-
art finger-vein-based biometric systems that are discussedin
Table II are reported in Table VII, together with the obtained
performance with our proposed CNN-based approach, when
using the same training and testing strategies. The resultsob-
tainable while exploiting two of the most-commonly employed
methods for finger-vein recognition, i.e., MC [8] and RLT [6],
under all the considered settings, are additionally reported for
further comparisons.

As it can be seen from the reported accuracies, our CNN-
based identification system cannot be properly trained under
the experimental setup employed in [3], where only session-
1 images from HKPU dataset are used for training, and
session-2 images for testing. A similar situation is encountered
when comparing the proposed system against the one in [34],
where tests over the FV-USM dataset have been performed by
considering only the first image of every finger from session-
1 for training and the6 images per finger of session-2 for
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TABLE VII: Identification accuracy comparison for the four considered publicly-available databases.

Database Training Testing
State-of-the-art comparison methods Proposed

Kumar et al. [3] Qui et al. [34] Van et al. [39] Jia et al. [31] Van et al. [30] Xie et al. [35] Banerjee et al. [36] MC [8] RLT [6] CNN

HKPU
6 images from 6 images from

90.08% - - - - - - 85.24% 78.28% 71.11%
session 1 session 2

FV-USM
first image from 6 images from

- 97.02% - - - - - 90.34% 78.28% 72.97%

session 1 session 2

SDUMLA
4 images remaining2 images - - 91.83% 92.50% 95.67% - - 86.01% 87.11% 97.48%

5 images remaining image - - - - - 97.76% 90.72% 97.95% 96.06% 98.90%

UTFVP
1 image from remaining image

- - - - - - - 92.22% 93.05% 95.56%

each session from each session

TABLE VIII: Identification accuracy for different training
strategies over original images.

Database
Training (images from each available sessions)

1 2 3 4

HKPU 82.19% 92.02% 95.32% 96.55%

FV-USM 91.75% 94.82% 97.53% 98.58%

SDUMLA 75.25% 77.99% 80.27% 97.48%

UTFVP 95.56% - - -

testing. Again, the reason behind such a low performance
depends upon the number of training samples, along with
the different quality of finger-vein images that exists in two
distinct sessions, as shown by the examples in Fig. 4.

A different behavior of our network has been observed when
considering the training/testing settings employed in [30] and
the SDUMLA database, which contains images taken from a
single session. In this scenario, the method here proposed is
able to achieve identification performance better than those
obtained in [35] and [36]. It is therefore reasonable to observe
that the proposed CNN-based identification system can work
properly when images of similar quality are used for both
training and testing purposes, regardless the absolute quality
level of the considered images. This assumption is confirmed
by the results in Table VII, referred to the comparison of
the proposed approach against MC and RLT, while taking
one finger-vein image from each session of the UTFVP
dataset, and using the remaining ones for testing purposes.The
proposed CNN-based identification system easily outperforms
both MC and RLT.

It is worth remarking that the aforementioned results have
been obtained with the proposed CNN-based identification
system without performing any kind of enhancement on finger-
vein images. Conversely, all the methods we are comparing
with use some image enhancement technique and feature
selection processes. Therefore, the use of original images
without any preprocessing and automatic feature extraction are
among the advantages of our proposed network.

B. Training Strategy Selection

As mentioned in the previous subsection, the use of a single
image or images from a single session for training purposes
may not be enough to produce the desired accuracy. Therefore,
we have analyzed the full potentiality of our proposed CNN
architecture by investigating the variations in identification ac-
curacies that can be achieved while adopting different numbers
of images for training. Hence, wherever possible,1, 2, 3, and

4 original images from all the available sessions of each of
the finger-vein patterns from the four databases are considered
for the training of our network.

Table VIII summarizes the obtained results and clearly
shows that, if the number of training samples from each
finger is increased, then the achieved accuracy also increases
significantly. Comparing these results with those reportedin
Table VII, a notable improvement in terms of achievable per-
formance can be seen for both HKPU and FV-USM databases.
From Table VIII it can also be noted that there is not much
difference in accuracy, for HKPU and FV-USM database,
when3 or 4 images are used for training. Hence, for further
experiments we employ3 images from each session of these
two databases for training. When considering the SDUMLA
database,4 images from each session are needed for training,
since low quality images are present in this database, as shown
in Figure 3. As for the UTFVP database, we can choose at
most one image from each session for training, since only
2 images are available for each finger’s acquisition sessions.
The obtained results show that identification accuracy greater
than95% can be achieved for all the four considered publicly-
available databases.

C. Proposed Network’s Accuracy for Best Training Strategies

In this subsection we report the results of experiments
performed in order to further evaluate the effectiveness of
our proposed approach. Specifically, we first have assessed
the improvements that can be obtained when the proposed
network is trained according to the settings described in
Section VI-B. A performance comparison with standard MC
and RLT methods is also provided here. Moreover, we have
also investigated whether the proposed method needs any
image enhancement technique to further improve the attainable
identification performance.

Table IX shows rank-1 identification accuracy for four
publicly-available databases, when exploiting the original
finger-vein images with MC, RLT, and proposed CNN-based
approach. Identification performance obtained using the pro-
posed system, when the network is fed with CLAHE [59]-
enhanced finger-vein images, is also reported here.

According to the obtained results, the proposed CNN-based
identification system systematically outperforms MC and RLT
approaches. It can also be seen that the contrast-enhanced
images achieve performance better than the original ones
only when considering the UTFVP dataset. It is evident from
Fig. 3 that vein patters in images from UTFVP database
are significantly more prominent and clearly distinguishable
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TABLE IX: CNN-based identification accuracy over the considered publicly-available databases.

Database Training Testing

Methods

MC RLT
CNN with CNN with CLAHE [59]

original images enhanced images

HKPU 3 images from each session remaining 3 images from each session83.33% 83.81% 95.32% 94.37%

FV-USM 3 images from each sessions remaining 3 images from each session92.60% 94.44% 97.53% 97.05%

SDUMLA 4 images remaining 2 images 86.01% 87.11% 97.48% 95.13%

UTFVP 1 image from each session remaining 1 image from each session 92.22% 93.05% 95.56% 98.33%
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Fig. 5: HKPU database: CMCs for original and contrast
enhanced finger-vein images while 3 images of each finger
from both sessions are used for training and testing.

1 2 3 4 5

Rank

94

95

96

97

98

99

100

R
ec

o
g
n

it
io

n
 R

a
te

 (
%

)

Original

CLAHE

Enhanced

Fig. 6: FV-USM database: CMCs for original and contrast
enhanced finger-vein images while 3 images of each finger
from both sessions are used for training and testing.

in their enhanced versions rather than in their original ones.
Nevertheless, the proposed CNN-based approach is typically
able to guarantee a very-high identification rate without using
any image enhancement technique.

Figures 5-8 provide further details regarding the proposed
method, by reporting the cumulative match curves (CMC) ob-
tained for different ranks, while using both the original and the
contrast-enhanced versions of the finger-vein images. Rank-
5 identification accuracy greater than98% can be achieved
for all the four considered publicly-available databases,while
a maximum of99.4% Rank-5 identification accuracy can be
achieved for the UTFVP database.

VII. C ONCLUSIONS

In this paper, we have proposed a CNN-based finger-vein
identification system which can perform an effective identifi-
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Fig. 7: SDUMLA database: CMCs for original and contrast
enhanced finger-vein images while 4 images of each finger are
used for training and 2 images for testing.

1 2 3 4 5

Rank

94

95

96

97

98

99

100

R
ec

o
g
n

it
io

n
 R

a
te

 (
%

)

Original

CLAHE

Enhanced

Fig. 8: UTFVP database: CMCs for original and contrast
enhanced finger-vein images while 1 image of each finger from
both sessions are used for training and testing.

cation irrespective of the environmental conditions. We have
presented an exhaustive set of experimental tests performed
over the four commonly-used and publicly-available databases.
The obtained results show that it is possible to achieve a
rank-1 identification accuracy greater than95% for all the
four databases, using our proposed CNN architecture. The
present work is one of the first comprehensive study analyzing
a finger-vein-based biometric identification system with more
than two publicly-available databases, to assess the effective-
ness of the proposed network under different image quality
conditions, with minimum human intervention. It can also be
seen that the identification accuracy of the proposed network
significantly increases with the employed number of training
images. Moreover, if the finger-vein images are not acquired
with the same illumination intensity and ambient lighting
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conditions for different sessions of acquisition, then theuse
of multiple session’s data for training can be considered asan
effective strategy for improving the achievable identification
accuracy2.
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