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Abstract—In this paper, we propose a vein-based biometric
verification system relying on deep learning. A novel approach
consisting of a convolutional neural network (CNN), trained in
a supervised manner, cascaded with an auto-encoder, trained
in an unsupervised way, is here exploited. In more detail, a
novel densely-connected convolutional autoencoder is here used
on top of backbone CNNs. This architecture aims at increasing
the discriminative capability of the features generated from hand
vein patterns. Experimental tests on finger, palm, and dorsal veins
show that the proposed approach leads to an improvement of the
recognition rates with respect to the use of the sole CNNs for
feature extraction. The achieved performance are superior to the
current state of the art in vein biometric verification.

Index Terms—Biometric recognition, Vein patterns, Deep
learning, Convolutional Neural Networks, Sparse Auto-encoders.

I. INTRODUCTION

THE recent advances in deep learning are leading to
tremendous changes also in the biometric framework

[1]. In fact, supervised learning, using architectures such
as convolutional neural networks (CNNs), has been widely
adopted for feature extraction and template comparison, with
application to several biometric traits [2]. Generative models,
such as autoencoders and generative adversarial networks,
have also been exploited to produce biometric representations,
typically resorting to an unsupervised learning strategy [3].

The present study investigates, for the first time, how the
exploitation of a cascade network, composed of both a su-
pervised CNN and an unsupervised autoencoder, can increase
the effectiveness of the feature extraction process, within the
vein-based verification framework. A novel densely-connected
convolutional autoencoder has been designed and used on top
of backbone CNNs to improve the discriminative capability
of the generated templates. The effectiveness of the proposed
approach has been evaluated through extensive experimental
tests carried out in the verification scenario, using vein patterns
obtained from finger, palm, and the back of the hand.

In Section II, a brief overview of vein-based verification
systems relying on deep learning approaches is given, with
the emphasis on methods exploiting autoencoders. The pro-
posed cascade network is described in Section III, where
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both the used backbone CNNs, as well as the proposed
densely-connected convolutional autoencoder, are described.
The experimental results are presented in Section IV, while
conclusions are finally drawn in Section V.

II. VEIN BASED VERIFICATION

Several approaches relying on deep learning techniques have
been proposed within the framework of vein-based biometric
verification. A summary is given in Table I, whereas for a
detailed overview the reader is referred to [12].

The majority of the applications of deep learning to biomet-
ric recognition is based on the supervised use of discriminative
models, such as CNNs or recurrent neural networks (RNNs),
to extract characteristics peculiar to each subject from the
available identifiers. To this aim, some works have recently
exploited generative models, usually trained in an unsuper-
vised manner. Within this framework, autoencoders have been
typically employed to perform dimensionality reduction or
denoising of the considered biometric samples. In fact, an
autoencoder is meant to learn, from a given set of data, in an
unsupervised manner, an efficient and compact representation,
i.e., an encoding, usually projecting the original space into a
lower-dimensional one [13]. In order to achieve such goal, two
networks have to be optimized during the training stage: an
encoder, mapping the input into a latent code, and a decoder,
mapping the latent code into an approximate reconstruction of
the original input. Typically, the learning process aims at forc-
ing the generated representations of the input to assume some
useful properties such as sparseness [14]. Representations of
behavioural biometric traits learned through autoencoders have
been used in the framework of keystroke data [15], online
signatures [16], latent fingerprint [17], periocular biometrics
[18], and face recognition [19], [20], [21], to cite just a few.

Some attempts to use autoencoders for vein-based recogni-
tion have also been performed. An approach to extract features
from finger veins with a single-hidden-layer autoencoder, and
performing comparisons using one-class Gaussian classifiers,
has been proposed in [22]. Representations generated using
convolutional autoencoders have been employed to perform
identification with classifiers based on neural networks and
support vector machines (SVMs) in [23] and [24], respectively.
Siamese networks have also been trained for verification
purposes in [25], where features generated by autoencoders
have been used as input. However, all the aforementioned
approaches could not achieve recognition performance as good
as those obtained using CNNs to create vein pattern repre-
sentations [4], [26]. Conversely, the method here proposed,
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TABLE I
DEEP-LEARNING-BASED VASCULAR BIOMETRIC VERIFICATION SYSTEMS: STATE-OF-THE-ART

Paper Trait Database Proposed System PerformanceName # of Subjects Comments Feature Extraction Comparison

[4]

Dorsal Vein
Finger Vein
Palm Vein
Palm Vein

OWN
FV-USM

PUT
PolyU-P

200
123
50

200

Training and test data belongs to different sessions.
Subjects are not disjoint in the partitions.

Multi-weighted
Co-occurence

Descriptor Encoding

Large Margin
Distribution

Machine

EER=0.015%
EER=0.307%
EER=0.615%
EER=0.017%

[5] Palm Vein PolyU-P
CASIA

250
100

Training and test data belongs to different sessions.
Subjects are not disjoint in the partitions.

Iterative Deep
Belief Network Hamming Distance EER=0.015%

EER=0.330%

[3] Finger Vein THU-FVFDT2
SDUMLA

610
106

Subjects in THU-FVFDT2 are split into disjoint sets for training, validation, and test.
SDUMLA is employed for system verification

Generative Adversarial Networks
for Finger Vein (FV-GAN)

Cross Correlation on
Binarized Templates

EER=1.12%
EER=0.94%

[6] Palm Vein
PolyU-P
CASIA

IITI

250
100
185

The first half samples are utilized as the gallery
and the remaining ones as the probe.

U-Net like Decoder-Encoder
CNN Architecture

Siamese Matching
Network

EER=0.66%
EER=3.71%
EER=0.93%

[7] Finger Vein SDUMLA
PolyU-F

106
156

Subjects in each dataset are split into two equal size sets. 2-fold cross validation is made.
The results on PolyU-F are biased due to pairing of data in the same session.

Densenet-161 on
Composite Finger Images

Shift Matching and
Minimum Rule

EER=2.35%
EER=0.33%

[8] Palm Vein
Dorsal Vein

PolyU-P
OWN

250
200 No information about training and test partitions. Spatial Pyramid Pooling

on Pre-trained VGG16 SVM Classifier EER=0.068%
EER=0.060%

[9] Finger Vein MMCBNU
SDUMLA

100
106

Genuine and Impostor pairs for training and testing do not come from disjoint subjects.
EER results are based on the average of 5 pairs

2-Channel Network, 2-Stream
Network, and Selective Network
based on Intra-Class Variations

SVM Classifier
with Linear Kernel

EER=0.10%
EER=0.47%

[10] Finger Vein SDUMLA
UTFVP

106
60

Each dataset is divided into two disjoint subsets containing 720 samples for training and tests.
Cross-testing among datasets is reported.

U-Net, RefineNet and SegNet on
Human Annotated Pixel-Labels

Cross Correlation on
Binarized Templates

EER=2.63%
EER=0.64%

[11] Finger Vein PolyU-F 156 105 subjects are used for training and tests are conducted on the remaining 51 subjects. Modified VGG-16 with
Supervised Discrete Hashing Hamming Distance EER=9.77%
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Fig. 1. High-level representation of the training (above) and testing (below) phases for the proposed system, based on a backbone CNN and a DCCAE.

and described in Section III, exploits autoencoders to generate
templates characterized by an improved discriminative capa-
bility, with respect to the use of CNNs only, thus attaining
recognition performance better than current state of the art.

III. PROPOSED SYSTEM

As outlined in Section II, autoencoders have been used so
far in biometric recognition systems to learn features, in an
unsupervised manner, directly from the employed traits.

In this paper, we take a different perspective as we evaluate
the effectiveness of a novel approach, in which a supervised
CNN is first trained on the original biometric data, and then
an autoencoder is employed to refine the obtained representa-
tions and to improve the achievable recognition performance.
Specifically, the proposed cascade network is illustrated in Fig-
ure 1. Feature learning is performed by sequentially training
the following two branches:

(i) a backbone CNN, trained in a supervised classification
mode. In the proposed implementations, following the
approach adopted in [12] and [26], we employ CNNs de-
rived from DenseNet-161 [27] and ResNext-101 (32x8d)
[28], initialized with weights trained over the ImageNet
database. As detailed in [12] and [26], the final fully-
connected layers of the considered CNNs are replaced
with a custom embedder, comprising a 7 × 7 average
pooling layer with batch normalization, a 50% dropout,

and a fully-connected layer with batch normalization
producing representations with dCNN = 1024 features.
Training is performed using a loss based on cross-entropy
with additive angular margin penalty (AAMP) [29];

(ii) an autoencoder, taking as input the representations gener-
ated by the employed backbone CNNs. The so obtained
representations are refined by learning, in an unsuper-
vised manner, a compact feature encoding with size
dAE = 256. In more detail, in this paper, we take an
innovative approach using, for the first time in literature,
a densely-connected convolutional autoencoder (DCCAE)
for biometric recognition purposes.

It is worth remarking that, in the experimental tests we have
conducted using cascade networks based on fully-connected
and convolutional autoencoders, it has not been possible to
achieve any performance improvement, with respect to the use
of backbone CNNs only.

On the other hand, taking inspiration from the benefits
stemming by the use of DenseNet architectures to perform
vein-based recognition [26], resorting to dense-blocks when
designing the proposed autoencoder has proved to be ef-
fective. Networks comprising dense blocks can be typically
defined through a limited number of parameters, thanks to
the concatenation of the output of each employed layer, thus
alleviating the vanishing gradient problem and achieve better
generalization during the training phase. Therefore, training
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TABLE II
ENCODER COMPONENT OF THE PROPOSED DCCAE

h Layer Input Size Output Size
1 Input Layer 1× 3 Conv 1× 1024 16× 1024

2-6 Dense Block 1
[

Batchnorm, ReLU
1× 3 Conv

]
× 5 16× 1024 80× 1024

7 Transition 1 Batchnorm, ReLU
80× 1024 32× 512

1× 3 Conv, str.2

8-12 Dense Block 2
[

Batchnorm, ReLU
1× 3 Conv

]
× 5 32× 512 80× 512

13 Transition 2 Batchnorm, ReLU
80× 512 64× 512

1× 3 Conv, str.1

14-18 Dense Block 3
[

Batchnorm, ReLU
1× 3 Conv

]
× 5 64× 512 80× 512

19 Transition 3 Batchnorm, ReLU
80× 512 32× 256

1× 3 Conv, str.2

20-24 Dense Block 4
[

Batchnorm, ReLU
1× 3 Conv

]
× 5 32× 256 80× 256

25 Transition 4 Batchnorm, ReLU
80× 256 16× 128

1× 3 Conv str.2

26 Hidden Encoder Fully-connected Layer
1× 2048 1× 512Batchnorm, Sigmoid

27 Latent Encoder Fully-connected Layer
1× 512 1× 256Batchnorm, Sigmoid

can be efficiently carried out even with a small amount of
data, as it may happen when dealing with biometric data.

The encoder and decoder components of the proposed
DCCAE are summarized in Tables II and III, respectively. All
dense blocks employed in the employed architecture have a
growth rate equal to 16, as shown in Figure 2. When training
the proposed DCCAE, the loss to be minimized is defined as

Loss = LR + β · LS , (1)

being β the sparsity tuning parameter. Cosine dissimilarity is
used for the reconstruction loss LR, with

LR =
1

B

B∑
i=1

[1− cos(xi, x̂i)], (2)

being xi the feature representation of a i-th vein sample
produced by the backbone CNN feature embedder, the feature
representation reconstructed by the decoder, and B the batch
size. Three different losses LS have been employed to evaluate
the sparsity of the produced encodings, resorting to Kullback-
Leibler divergence DKL, L1 regularization, and to spectral
restricted isometry property (SRIP) regularization [30]. The
sparsity loss based on DKL is defined as:

LDKL

S =

29∑
h=26

N(h)∑
j=1

DKL(ρ || ρ̂(h)j ), ρ̂
(h)
j =

1

B

B∑
i=1

[a
(h)
j (xi)]

(3)
where a(h)j is the j-th activation output of the h-th hidden layer
when xi is fed as input to the DCCAE, with j = 1, . . . , N (h),
being N (h) the number of activation units in the h-th hidden
layer. This loss therefore depends on the divergence of the
average activation of a neuron j in the hidden layer h from
the uniform distribution defined by the sparsity parameter ρ ∈
[0, 1]. The L1 sparsity loss is instead defined as:

Batchnorm + ReLU + Conv/Tran-conv

1 2 3 4 5

IN
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U
T
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U
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IN Channels:    64
OUT Channels:16 

Fig. 2. Dense block with 5 Batchnorm-ReLU-Conv/Tran-conv dense layers.

TABLE III
DECODER COMPONENT OF THE PROPOSED DCCAE

h Layer Input Size Output Size

28 Latent Decoder Fully-connected Layer
1× 256 1× 512Batchnorm, Sigmoid

29 Hidden Decoder Fully-connected Layer
1× 512 1× 2048Batchnorm, Sigmoid

30 Transition 1 Batchnorm, ReLU
16× 128 32× 256

1× 3 Tran-conv, str.2

31-35 Dense Block 1
[

Batchnorm, ReLU
1× 3 Tran-conv

]
× 5 32× 256 80× 256

36 Transition 2 Batchnorm, ReLU
80× 256 64× 512

1× 3 Tran-conv, str.2

37-41 Dense Block 2
[

Batchnorm, ReLU
1× 3 Tran-conv

]
× 5 64× 512 80× 512

42 Transition 3 Batchnorm, ReLU
80× 512 32× 512

1× 3 Tran-conv, str.1

43-47 Dense Block 3
[

Batchnorm, ReLU
1× 3 Tran-conv

]
× 5 32× 512 80× 512

48 Transition 4 Batchnorm, ReLU
80× 512 16× 1024

1× 3 Tran-conv, str.2

49-53 Dense Block 4
[

Batchnorm, ReLU
1× 3 Tran-conv

]
× 5 16× 1024 80× 1024

54 Transition 5 Batchnorm, ReLU
80× 1024 16× 1024

1× 3 Tran-conv, str.2
55 Output Layer 1× 3 Tran-conv 16× 1024 1× 1024

LL1
S =

29∑
h=26

N(h)∑
j=1

|a(h)j |. (4)

Both LDKL

S and LL1
S sparsity losses therefore depend on the

activation outputs of four layers of the proposed DCCAE,
namely the last two in the encoder and the first two in the
decoder. Conversely, the loss based on SRIP regularization is
computed on the weights of each convolutional layer of the
proposed DCCAE, that is:

LSRIP
S =

55∑
h=1

σ(W (h)>W (h) − I), (5)

being W (h) a matrix containing the weights of the h-th layer,
σ the spectral norm which calculates the supremum of its
argument as defined in [30], and I an identity matrix. Here, it
is worth mentioning that, differently from the LDKL

S and LL1
S

losses, LSRIP
S has been originally defined for orthogonality

regularization, instead of for generating sparse representations.
Its effectiveness in generating discriminative templates from
biometric data by means of autoencoders is here evaluated for
the first time in literature.

IV. EXPERIMENTAL ANALYSIS

The proposed system, jointly employing CNN and DCCAE,
has been tested over three different kinds of vascular traits,
namely finger vein using the SDUMLA database [31], palm
vein with the PolyU-P database [32], and dorsal vein through
the Bosphorus database [33].

Open-set scenarios, in which the classes available in each
dataset are split into two equally-sized disjoint partitions,
one used for training with 20% of training data reserved
for validation, and the other one employed for verification
tests, have been considered. For databases comprising multi-
condition (Bosphorus) and multi-session (PolyU-P) data, sam-
ples from different conditions/sessions have been employed for
enrolment and verification purposes, to avoid any bias effect.

Backbone CNNs have been trained using stochastic gradient
descent with momentum (SGDM) and a batch size of 32. The
AAMP margin and scale have been selected in the ranges
[0.3, 0.7] and [16, 96], respectively, and weight decay chosen
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Fig. 3. ROCs of systems using DenseNet-161 as backbone CNN: SDUMLA (left), PolyU-P (center), Bosphorus (right).

Fig. 4. ROCs of systems using ResNext-101 as backbone CNN: SDUMLA (left), PolyU-P (center), Bosphorus (right).

TABLE IV
RECOGNITION RATES (%) USING DENSENET-161 AS BACKBONE CNN.

Database
CNN only

(no DCCAE)
CNN + DCCAE

L
DKL
S

LL1
S LSRIP

S No sparsity
EER GAR EER GAR EER GAR EER GAR EER GAR

SDUMLA 0.023 99.97 0.012 99.98 0.015 99.99 0.009 99.99 0.025 99.98
PolyU-P 0.222 99.52 0.194 99.51 0.194 99.69 0.189 99.68 0.228 99.67

Bosphorus 2.33 81.35 2.07 84.34 1.92 82.37 1.78 85.33 2.28 78.20

within the set {0.1, 0.05, 0.001, 0.0005}. For the proposed DC-
CAE branch, Glorot uniform initialization is used for convolu-
tional and fully-connected layers, and unit weight initialization
for batch normalization. Training is performed using SGDM
with a batch size of 128. The weight decay hyper-parameter
has been selected in the set {0.1, 0.05, 0.001, 0.0005}, while
the sparsity tuning parameter β falls in the range [0.00001, 25].

An ablation study has been carried out to highlight the
effects and the relevance of using the proposed DCCAE in
addition to a standalone CNN, as well as the effectiveness
of different sparsity losses, by evaluating the performance
achievable when exploiting:
• standalone CNNs without any sparsity loss (this scenario

represents the current state of the art);
• a cascade network comprising a CNN and the proposed

DCCAE (CNN + DCCAE), without any sparsity loss;
• a CNN + DCCAE network, with L1 sparsity loss;
• a CNN + DCCAE network, with KLD sparsity loss;
• a CNN + DCCAE network, with SRIP sparsity loss.
The obtained performance, in terms of receiver operating

characteristics (ROCs), are shown in Figures 3 and 4, and
summarized in terms of equal error rate (EER) and genuine
acceptance rate (GAR) at false acceptance rate (FAR) equal to
10−3 in Tables IV and V, respectively. It is worth remarking

TABLE V
RECOGNITION RATES (%) USING RESNEXT-101 AS BACKBONE CNN.

Database
CNN only

(no DCCAE)
CNN + DCCAE

L
DKL
S

LL1
S LSRIP

S No sparsity
EER GAR EER GAR EER GAR EER GAR EER GAR

SDUMLA 0.105 96.55 0.088 97.51 0.094 97.66 0.085 99.09 0.103 99.45
PolyU-P 0.528 97.88 0.483 97.92 0.467 98.67 0.439 97.82 0.506 98.15

Bosphorus 3.54 80.97 3.48 84.98 3.22 83.11 3.18 87.45 4.11 69.58

that the recognition rates reported in Table IV, for the case
where the proposed DCCAE is not used, currently represent
the best performance achievable when using hand vein patterns
[26]. The reported results show that the designed DCCAE
is able to improve the performance achievable using only
CNNs in all the considered scenarios, that is, for finger, palm,
and dorsal vein, as well as for both the considered backbone
CNNs. The obtained results show that the sparseness of the
generated encodings affects the discriminative capability of the
generated representations, with better performance typically
achieved when using the SRIP regularization.

V. CONCLUSIONS

We have proposed a novel feature extraction pipeline for
vein-based biometric recognition. With respect to templates
generated using a CNN only, the discriminative capability of
the created representations are improved by resorting to a
cascade network composed of a backbone CNN and a sparse
auto-encoder. The proposed system guarantees recognition
performance better than the current state of the art on finger,
palm, and dorsal vein patterns, with a GAR at FAR=10−3

equal to 99.99% on SDUMLA finger vein dataset [31], 99.69%
on PolyU-P palm-vein dataset [32], and 87.45% on Bosphorus
dorsum vein dataset [33]. The obtained results show that the
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sparseness in autoencoders has to be taken into account to
improve the achievable error rates. In the performed tests,
the SRIP loss, here applied for the first time to autoencoders,
outperforms in most cases the commonly used DKL and L1
losses.
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