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ABSTRACT

The popularity of wearable devices, such as smart glasses, chestbands, and wristbands, is nowadays
rapidly growing, thanks to the fact that they can be used to track physical activity and monitor users’
health. Recently, researchers have proposed to exploit their capability to collect physiological signals
for enabling automatic user recognition. Wearable devices inherently provide the means for detecting
their unauthorized usage, or for being used as front-end in biometric recognition systems controlling
the access to either physical or virtual locations and services. The present work evaluates the feasi-
bility of performing biometric recognition using signals captured by wearable devices, considering
data collected through off-the-shelf commercial wristbands, and comparing recordings taken during
two distinct sessions separated by an average time of 7 days. In more detail, recognition is performed
leveraging on electrodermal activity (EDA) and blood volume pulse (BVP), considering measure-
ments taken from 17 subjects performing natural activities such as attending or teaching lectures.
Several tests have been carried out to determine the most effective representation of the considered
EDA and BVP signals, as well as the most suitable classifier. The best recognition performance has
been achieved exploiting convolutional neural networks to extract discriminative characteristics from
the combined spectrograms of the employed EDA and BVP data, guaranteeing average correct identi-
fication rate of 98.58% for test samples lasting 30 seconds.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, the use of smart wearable devices (SWD) is
becoming increasingly popular. Their principal use consists in
monitoring the health of the user from parameters such as the
heart rate, thus acting as assistants to control physical activity,
and help achieving fitness goals (Hill, 2015). However, the ca-
pability of SWDs in acquiring physiological signals could be
also exploited within the framework of biometric recognition
systems, using the recorded data to discriminate between le-
gitimate and unauthorized subjects (Chaki et al., 2019; Blasco
et al., 2016).

The use of physiological signals for people recognition is
commonly referred to as cognitive biometrics (Revett and
de Magalhães, 2010). Exploiting these traits to recognize indi-
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viduals offers several advantages compared to the exploitation
of traditional physical or behavioural identifiers such as finger-
print, face, iris, or signature. First, being physiological signals
not easy to be captured at a distance with conventional acquisi-
tion devices, and reflecting the mental and emotional states of
an individual, they are extremely difficult to steal and replicate,
making spoofing attacks almost impossible to be implemented
(Revett and de Magalhães, 2010). Moreover, physiological sig-
nals are able to inherently provide liveness detection, in addi-
tion to uniqueness and universality. They also allow to perform
continuous user recognition, thus preventing session hijacking,
and avoiding unauthorized access to information or services af-
ter a successful recognition. Eventually, biosignals can be ac-
quired in a non-invasive way, making the acquisition procedure
convenient, and the system user friendly.

In the present study, the recognition performance achievable
when exploiting two biosignals, namely electrodermal activity
(EDA) and blood volume pulse (BVP), as biometric identifiers,
is investigated. Electrodermal activity, also known as galvanic
skin response (GSR), reflects changes in the behavior of ec-
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crine sweat glands, directly controlled by the sympathetic ner-
vous system (SNS) (Boucsein, 2012). It is typically measured
by placing two electrodes on the skin, and connecting them to
a voltage amplifier. EDA has been widely used as measure of
physiological arousal, and as a proxy for emotions and stress
(Schmidt et al., 2019). EDA is characterised by peaks, also
known as skin conductance responses (SCRs), in correspon-
dence to external stimuli (Boucsein, 2012). EDA responses
vary across individuals, depending also on demographic char-
acteristics such as gender, age and culture (Fowles et al., 1981).
This interpersonal variability in the EDA responses can be actu-
ally exploited for the automatic identification of different sub-
jects (Bianco and Napoletano, 2019). The blood volume pulse
describes the changes in the peripheral blood volume due to va-
sodilation and vasoconstriction (Peper et al., 2010). It is com-
monly measured by resorting to photoplethysmography (PPG)
techniques, using a pulse oximeter to illuminate the skin and
measure light absorption. Volume changes in the microvascular
bed of tissue results in variations of the reflected light, with the
recorded signals therefore providing information about cardio-
vascular activities such as heart rate (HR) and heart rate vari-
ability (HRV) (Peper et al., 2010). Characteristics of the BVP
signal depends on the activity of the Parasympathetic and SNS
(Sancho et al., 2018). Similarly to EDA, features extracted from
the BVP can be used as proxy for stress, cognitive load and
affect (Schmidt et al., 2019). It has been shown that a large
inter-individual variability in the physiological characteristics
of the heart as the heart’s mass and orientation, the orientation
and position of the myocardium and the shape of the torso exist
(Agrafioti et al., 2011). Such differences have made the cardio-
vascular activity’s measurements suitable for biometric recog-
nition (Agrafioti et al., 2011; Ekiz et al., 2020).

The performed experimental evaluation has been explicitly
designed to obtain a preliminary evidence that promising recog-
nition performance can be achieved exploiting physiological
data acquired using a commercial, off-the-shelf wristband. Fur-
thermore, in order to perform a proper analysis of the discrim-
inative capabilities of the considered biometric traits, signals
recorded during two distinct acquisition sessions have been
compared in the performed tests. In order to achieve such aims,
we have exploited a longitudinal database comprising samples
taken from 17 different subjects attending or teaching lectures,
therefore taking into account a natural setting representing prac-
tical working conditions. Physiological signals have been cap-
tured, for each subject, during two different acquisition ses-
sions, separated by an average period of 7 days. A multimodal
approach, jointly using EDA and BVP to perform recognition,
is here proposed, resorting to feature-level fusion to improve
the performance of the proposed system. Discriminative rep-
resentations of the employed signals are obtained considering
representations in the time and time-frequency domains, fed to
both shallow classifiers and deep-learning-based approaches to
perform user identification. The effects of adopting different
window sizes are also investigated, demonstrating that the pro-
posed approach is able to guarantee good recognition perfor-
mance even with test samples lasting only 10s.

The state of the art on biometric recognition using SWDs

is outlined in Section 2. The employed database is described in
Section 3, while the performed signal processing is presented in
Section 4. The adopted classification strategies are then detailed
in Section 5, with the obtained results discussed in Section 6.
Finally, conclusions, including limitations and possibilities for
further advancements, are drawn in Sections 7 and 8.

2. Related Work

Although the use of wearable devices became increasingly
common in recent years, the field of biometric recognition
based on physiological signals recorded by SWDs is still under-
explored. An overview of relevant related works on biometric
recognition using SWD is given in Table 1, where the achieved
performance, the kind of considered wearable devices, the ex-
perimental setting, and the time needed for recognition, are
summarized. More in detail, when considering the experimen-
tal settings employed in literature, we refer to three different
categories: laboratory (L), field (F), i.e., real-life scenarios in
completely unconstrained environments, and field with con-
straint (FC), with subjects having constraints in terms of move-
ments and environment (Schmidt et al., 2019). In the present
study, we take into account an FC scenario, since signals are
recorded from students and teachers participating to lectures
taking place in a room.

The first relevant study on the effectiveness of biosignals
recorded through wearable devices to perform biometric recog-
nition has been proposed by Cornelius et al. (Cornelius et al.,
2014), taking bioimpedence into account. Tests on eight sub-
jects have achieved 98% accuracy, when comparing signals col-
lected during a single-day usage. A deep-learning-based ap-
proach has been proposed by Everson et al. (Everson et al.,
2018), exploiting a database of 12 subjects whose PPG sig-
nals have been recorded during physical activity. The collected
temporal data have been fed into a framework consisting of
two convolution neural networks (CNN), in conjunction with
two long short-term memory (LSTM) units, and followed by
a dense output layer, achieving a 96% recognition accuracy.
Luque et al. (Luque et al., 2018) have exploited a dense neu-
ral network (DNN) classifier for PPG-based biometric recogni-
tion, achieving classification with an area under curve (AUC) of
0.78 and 0.83 for the two considered databases. In (Ekiz et al.,
2020), the authors used wristbands to collect data from 28 sub-
jects. Heart rate variability (HRV), derived from PPG, has been
employed to authenticate users through features extracted in the
frequency domain, and machine learning techniques have been
used for classification. The best reported performance corre-
spond to a correct identification rate (CIR) at 98.48%, and an
equal error rate (EER) at 3.96%. All the aforementioned studies
have performed recognition using a single physiological signal,
and considering data recorded during a single session.

Multimodal biometric recognition has been instead proposed
in Blasco et al. (Blasco and Peris-Lopez, 2018), where signals
acquired through several SWDs, including PPG, ECG, EDA,
and accelerometer (ACC), have been employed for biometric
recognition. The authors have built their own low-cost wearable
sensors, that have been used to capture data from 25 subjects
while walking or being seated, at either resting state and after
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Table 1: Overview of the state-of-the-art approaches for biometric recognition using physiological signals and wearable devices.

Reference Signals
Database

Performance Wristband
Experimental Time needed for

Subjects Sessions settings recognition

(Cornelius et al., 2014) Bioimpedence 8 1
CIR = 97.8%

3 F 15s
EER = 12.7%

(Everson et al., 2018) PPG 12 1 CIR = 96.00% 3 L Not specified

(Luque et al., 2018) PPG
43 1 AUC = 78.2%

7 L
3s

20 1 AUC = 83.2% 1s

(Ekiz et al., 2020) HRV 28 1
EER = 3.96%

3 FC 120s
CIR = 98.48%

(Blasco and Peris-Lopez, 2018)
PPG, ECG,

25 1
AUC = 99.00%

3 L 2s
ACC, EDA EER = 2.00%

(Bianco and Napoletano, 2019)
HR, BR,

37 1 CIR = 88.74% 7 L 60s
EDA, PER-EDA

(Alonso et al., 2016)
SPO2, AF, ECG,

25 1 CIR = 92% 7 L Not specified
EMG, EDA,Temp

(Alemán-Soler et al., 2016) EDA, EMG, ECG 18 1 CIR = 85.55% 7 L Not specified

(Byeon and Kwak, 2019) ECG
211 2 CIR = 98.99%

7 L Not specified
99 1 CIR = 94.03%

(Sancho et al., 2018) PPG

42 1 EER = 1.0% 7

L Not specified
56 2 EER = 8.0 - 21.5% 7

24 3 EER = 6.6 - 23.2% 7

24 3 EER = 6.0 - 20.5% 7

(Vhaduri and Poellabauer, 2019)
step count, HR,

400 17 months
CIR = 90 - 93%

3
F

300s
calorie burn, MET EER = 5% (activity-dependent)

(Vhaduri and Poellabauer, 2017)
step count, HR,

421 2 years CIR = 92.97% 3
F

300s
calorie burn, MET (activity-dependent)

a gentle stroll. Features have been extracted exploiting the dis-
crete Fourier and Walsh–Hadamard transforms, and then com-
pared using Gaussian models, obtaining an EER = 2%. Mul-
timodal physiological signals have been employed to perform
biometric recognition also in (Bianco and Napoletano, 2019),
considering breathing rate (BR), HR, palm electrodermal activ-
ity (P-EDA), and perinasal perspitation (PER-EDA). Classifi-
cation approaches consisting of a CNN with mono-dimensional
kernels, and inputs represented as windows of the raw signals
stacked along the channel dimension have been employed. A
database with 37 subjects, acquired during a controlled exper-
iment on a driving simulator, has been collected and used to
reach a top accuracy of 88.74%. In (Alonso et al., 2016) the
authors collected signals acquired from 25 people. A com-
bination of principal components analysis (PCA) and support
vector machines (SVMs) is applied to identify people using
ECG, EDA, airflow (AF), temperature (Temp), pulse oximetry
(SPO2), and electromyogram (EMG). The testing results have
achieved a correct identification rate of 92%. Alemán-Soler et
al. (Alemán-Soler et al., 2016) have presented an approach to
use different biomedical signals, namely EMG, ECG, and EDA,
in order to perform biometric identification. Several statistical
parameters have been used as features, performing classifica-
tion with a neural network, achieving a CIR of 85.55%.

Although the aforementioned works have conducted inter-
esting studies regarding the joint usage of multiple physiolog-
ical signals to perform biometric recognition, all of them suf-
fer from a notable flaw, that is, only single-session databases
have been used for the experiments. Under this scenario, the
estimated performance may depend more on session-specific
recording conditions than on individual characteristics of the
involved subjects (Maiorana et al., 2015). Furthermore, signals

have been always acquired in laboratory conditions, which are
unlikely to reflect real-world situations, preventing the findings
to be robust to the typical noise of natural scenarios.

To the best of our knowledge, very few studies have taken
into account the permanence of the considered physiological
signals, properly performing tests by recording and comparing
data acquired through SWDs during multiple acquisition ses-
sions. Byeon et al. have evaluated electrocardiogram (ECG)
biometrics using pre-configured models of convolutional neu-
ral networks, such as VGGNet, ResNet, DenseNet and Xcep-
tion, with various time-frequency representations, namely spec-
trogram, log spectrogram, mel spectrogram, and scalogram
(Byeon and Kwak, 2019). Two different databases, one com-
posed of two sessions, and the other one with data captured
during a single session, have been there considered, achieving
a correct identification rate (CIR) of 98.99% and 94.04%, re-
spectively. A long-term feasibility study on the use of PPG
signals as biometric trait has been performed in (Sancho et al.,
2018). Several feature extractors, based on the time domain and
the Karhunen–Loève transform, and matching metrics, includ-
ing Manhattan and Euclidean distances, have been tested using
four different databases. The achieved equal error rates (EERs)
range from 1.0% to 8.0% when a single session is used, and
from 19.1% to 23.2% when signals from different sessions are
compared. Despite the good results obtained in the aforemen-
tioned studies, they present some limitations. First of all, the
performed experiments have been carried out in laboratory set-
tings. More importantly, medical devices have been there em-
ployed, with such acquisition modalities being hard to be repli-
cated in practical applications, due both to the required costs
and to the user inconvenience. In this regard, it is worth remark-
ing that the present study has been instead conducted consider-
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ing the multi-session database presented in (Di Lascio et al.,
2018), collected in a real-life scenario while the involved sub-
jects attend lectures performing natural activities such as listen-
ing, talking, making gestures, and taking notes. Furthermore, a
commercial off-the-shelf wristband has been employed for data
collection, thus allowing to considering signals properly repre-
senting practical working conditions.

Commercial devices have been also used in the longitudi-
nal studies performed in (Vhaduri and Poellabauer, 2019) and
(Vhaduri and Poellabauer, 2017). In more detail, three types
of biometric identifiers, namely step count, HR, calorie burn,
and metabolic equivalent of task (MET), have been acquired
through a Fitbit wearable device, and later used for user recog-
nition, in (Vhaduri and Poellabauer, 2019). Recordings from
over 400 users have been acquired in a 17-month long health
study, and used to achieve an average recognition accuracy at
about 93%, and an EER at 5%. A similar approach has been
also investigated in (Vhaduri and Poellabauer, 2017), where an
analysis on 421 Fitbit users has been carried out for two years,
achieving an average recognition accuracy at 92.97%. In both
studies, statistical features have been used to discriminate users,
and SVMs exploited for user classification. People taking part
to the experiments wore the Fitbit SWDs all day long, yet bio-
metric recognition has been performed according to an activity-
dependent modality, recognizing users only when involved in
specific tasks. Moreover, the time required to perform recogni-
tion is in the order of five minutes, which seems overly long to
be practically considered in real-life applications. Conversely,
the proposed work focuses on keeping low the required recog-
nition time, with promising recognition results achieved while
resorting to query samples lasting only 10s.

3. Employed Database

In this paper we investigate the feasibility of using physio-
logical signals gathered with commercial wristbands to auto-
matically identify several users. In more detail, the employed
database, collected in natural environments, for multiple days,
and with wrist-worn devices, has been presented in (Di Lascio
et al., 2018), where it has been employed to evaluate students’
engagement during lectures. The considered database contains
EDA and BVP data from 33 healthy participants (24 students
and 9 instructors), collected during 41 actual lectures in class-
room from four courses over a period of three weeks. The av-
erage duration of a lecture is about 43 minutes. Physiological
data have been collected using the unobtrusive off-the-shelf E4
wristband (Garbarino et al., 2014), that participants wore dur-
ing the lectures. For further details regarding the data collection
procedure we refer to (Di Lascio et al., 2018).

To perform the analysis presented in this paper, we have se-
lected a subset of the available data. Specifically, only partic-
ipants for which EDA and BVP samples have been recorded
during at least two different days have been considered. For
each subject, we have employed signals lasting at least 30 min-
utes, and taken from four randomly-selected lectures (two in
one day, and two in another). We refer to data collected in the
same day for each participant as session. The average distance
between two sessions of the same subject is 7 days. Following
the aforementioned criteria, we have employed data recorded

during a total of 34 unique sessions, with samples belonging to
17 subjects, including four instructors.

4. Template generation

The employed representations of EDA and BVP signals have
been obtained by first applying the pre-processing procedures
commonly adopted in literature (Boucsein, 2012; Kalimeri and
Saitis, 2016; Greco et al., 2015; Zhang et al., 2018).

In particular, we have filtered-out noise from the EDA traces,
sampled at 4Hz, using the Butterworth low-pass filter with
a 0.4Hz cut-off frequency, similarly to (Kalimeri and Saitis,
2016). We have then decomposed the EDA signal, to which
we refer as EDA-mixed, in its phasic and tonic components,
using the Python implementation1 of the convex optimisation
approach proposed by Greco et al. (Greco et al., 2015). The
two components differ in time resolution: the phasic compo-
nent is characterised by fluctuations in response to stimuli at
time resolution of seconds, while the tonic component changes
at scale of minutes, and provides information about the trend of
the signal (Boucsein, 2012; Branković, 2012). Different com-
binations of the computed mixed, phasic, and tonic components
of the EDA signals have been employed in the performed tests,
with the configurations providing the best recognition results in
each considered scenario detailed in Section 6.

As for BVP signals, we have removed high-frequency noise
from the original data, sampled at 64 Hz, using the first order
Butterworth filter with a cut-off frequency of 5 Hz, similarly to
(Zhang et al., 2018).

To guarantee the same amount of samples for all the subjects,
we have selected the central 30 minutes of each lecture. We
have then segmented the physiological signals into overlapping
frames, using a sliding window approach with a window size
W and an overlap O. A single frame is considered as either a
training sample, or a recognition probe, in the performed tests.
We have used time windows with lengths W = {10, 20, 30} sec-
onds. Time windows larger than 30s have not been considered
due to the inconvenience a long recognition time can cause to
the user. On the other hand, the minimum windows size has
been set to 10s to be able to acquire enough discriminative in-
formation. An O =75% overlap factor between consecutive
frames is also employed to generate a number of samples al-
lowing to properly train the employed CNNs.

4.1. Feature Extraction and Fusion

In the performed tests, we have exploited representations of
EDA and BVP physiological signals in both time and time-
frequency domains. Regarding the latter one, we have resorted
to spectrograms, providing two-dimensional representations of
the frequency content over time. The computed spectrograms
are based on the short-time Fourier transform (STFT), divid-
ing the considered signals into continuous short segments, and
applying the Fourier transform to each of them (Kehtarnavaz,
2008). The STFT is expressed mathematically as:

1https://github.com/lciti/cvxEDA

https://github.com/lciti/cvxEDA
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(a) (b) (c) (d)

Fig. 1: Examples of spectrograms of the 30 seconds segments of BVP signal (a), EDA-mixed (b), phasic (c), and tonic (d) component of the EDA .

XS T FT [m, n] =
N−1∑
k=0

x[k]w[k − m]e− j2πnk/N (1)

where x[k] represents the signal and w[k] the window of N
points (Kehtarnavaz, 2008). The spectrogram is an intensity
plot, and each row represents the variation of the power spec-
tral density (PSD) of the signal, corresponding to the magnitude
squared of the STFT, over time. Figure 1 presents an exam-
ple of the spectrogram of 30 seconds segments of the BVP, the
EDA-mixed, and the phasic component of the EDA.

The considered EDA and BVP components are employed,
either individually or in a combined form, as inputs to several
classifiers, as detailed in the following section.

5. Employed Classifiers

In order to perform an exhaustive set of experimental tests,
we have evaluated the effectiveness of both shallow classifiers
and deep learning approaches. The employed standard machine
learning algorithms are detailed in Section 5.1. The considered
deep learning approaches are detailed in Section 5.2, where the
used CNN architectures are outlined, and in Section 5.3, where
the recurrent neural networks (RNNs) applied to the available
temporal signals are presented.

5.1. Shallow Classifiers

Representations based on the spectrograms of the EDA and
BVP signals have been used as inputs to the considered shal-
low classifiers. In more detail, when performing recognition
using only the components derived from the EDA signals, all
of them, that is, the mixed, phasic, and tonic components, are
jointly used as input to the employed algorithms. The spectro-
grams of the three components are in fact concatenated to cre-
ate a one-dimensional feature vector, representative of an EDA
frame. On the other hand, in order to maximize the achievable
recognition performance, on an empyrical basis we have used
only the mixed and phasic components of the EDA when jointly
exploiting both EDA and BVP data, performing also in this case
a feature-level fusion of the available spectrogram features.

The employed feature representations have been normalized
using z-score before applying the used shallow classifiers, in
order to speed up the learning process. A feature selection pro-
cess is also carried out before feeding the employed representa-
tions to the considered shallow classifiers. Specifically, in each
considered scenario, an ANOVA test has been performed on

each feature, with the resulting F-scores providing information
regarding the separation of distributions belonging to different
subjects. Tests have been then done for an increasing number
of features, sorted for decreasing F-scores, used as inputs to the
employed classifiers.

Three different shallow classifiers, relying on distinct strate-
gies to perform classification, have been employed in the per-
formed tests. In more detail, support vector machine (SVM) has
been chosen as representative of parametric classifiers (Bishop,
2006). Its purpose is to find the optimal hyperplane that allows
to correctly separate training data belonging to different classes,
maximizing the margin between the decision boundaries and
the samples deemed most difficult to classify, that is, the sup-
port vectors. A one-versus-all (OvA) design has been employed
in the performed tests to apply the binary SVM approach to a
multi-class scenario. Non-parametric standard machine learn-
ing algorithms, which do not require to make any assumption
on the distributions of the treated data, have been also exploited,
resorting to random forest (RF) and gradient boosting (GB) ap-
proaches (Friedman et al., 2009). Both RF and GB rely on en-
sembles of weak classifiers, that is, decision trees in our case.
Yet, while RF exploits a bagging approach, creating an ensem-
ble of independent decision trees trained on different subsets
of the available training data, GB instead performs an incre-
mental learning, sequentially creating decision trees based on
inputs depending on the outcomes of the previously generated
predictors. In the performed tests, the XGBoost implementa-
tion has been used for the employed ensemble classifiers (Chen
and Guestrin, 2016).

5.2. Convolutional Neural Networks

As done when using the considered shallow classifiers, spec-
trograms are used as inputs of the empoyed CNNs. Specifically,
also in this case all the three components of the EDA signals
have been employed when using only EDA to perform recog-
nition, while only the mixed and phasic EDA components have
been used when jointly exploiting EDA and BVP data. For each
considered scenario, the spectrograms of the considered com-
ponents are arranged as different planes of three-dimensional
tensors, thus again resorting to feature-level fusion. The created
structures are then fed to well-known CNNs proposed in litera-
ture to perform object classification on RGB images, that is, the
VGG-16 (Simonyan and Zisserman, 2014) and MobileNetV2
(Sandler et al., 2018) CNN architectures, after being resized to
comply with the input requirements of each network.
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5.2.1. VGG-16
VGG-Net has a simple structure, and for this reason it is

widely used. In details, it consists of 13 convolutional layers,
5 pooling layers, and 3 fully-connected layers, the last one fol-
lowed by a softmax classifier. All hidden layers are equipped
with a rectification (ReLU) non-linearity. The input of the first
convolutional layer has a size of 224×224×3, and a small 3×3
filter size is employed for kernels.

We have initialized VGG-16 weights with those estimated
for an image classification task over Imagenet (Russakovsky
et al., 2015). The layers have been then fine-tuned using a
cross-entropy loss function for back-propagation, with stochas-
tic gradient descent (SGD) and a batch size of 16. Learning rate
has been set to 0.001, with momentum at 0.9. The maximum
number of training epoch is set to 100, with early stopping in
case the validation loss is minimized.

5.2.2. MobileNetV2 Architecture
MobileNetV2 is a neural network architecture that runs very

efficiently on mobile devices, making the proposed application
feasible for a real scenario where wearable devices are cou-
pled with a smartphone. MobileNetV2 builds upon the ideas
from MobileNetV1 (Howard et al., 2017), using depthwise sep-
arable convolution, and a pointwise convolution replacing the
full convolutional operator. However, MobileNetV2 introduces
two new features to the architecture: linear bottlenecks between
the layers, and shortcut connections between the bottlenecks.
The architecture of MobileNetV2 contains the initial fully con-
volution layer with 32 filters, followed by 19 residual bottle-
neck layers. The input of the first convolutional layer has size
224 × 224 × 3. ReLU is used as non-linearity, together with a
kernel size 3 × 3. Dropout and batch normalization are utilized
during training.

As done for VGG-16, also MobileNetV2 has been initialized
with the weights estimated over Imagenet, with fine-tuning per-
formed using a cross-entropy loss function and SGD with mo-
mentum. The maximum number of training epoch is set to 100
also for MobileNetV2.

5.3. Recurrent Neural Networks
Tests have been also performed using the temporal behavior

of EDA and BVP signals as inputs to RNNs. Long short-term
memory (LSTM) networks, the most-widely employed kind of
RNN architecture, have been used for this purpose. Specifi-
cally, signals created combining, at feature level, the tempo-
ral components of EDA and BVP data, are fed to networks
comprising a bi-directional LSTM with 1300 hidden states, fol-
lowed by a dropout layer with dropout probability equal to 40%,
and a fully connected layer with a softmax as loss function.

6. Results and Discussion

In order to estimate the achievable recognition performance,
in terms of correct identification rate (CIR), we have used for
each subject’s enrolment the data from the first session (the first
20% for validation, and the remaining 80% for training), while
samples belonging to the second session have been reserved for
testing. The validation samples have been used for tuning the

hyper-parameters of the shallow classifiers using a grid search
approach. Specifically, we have chosen the hyper-parameters
optimizing the CIR achievable on the validation set, and then
used them to perform the final training process on the whole
first session data. As for the hyper-parameters of the employed
CNNs, we have leveraged on those of the pre-trained networks,
and used the validation set for early stopping only. For each
subject, a value of CIR is computed. In order to obtain the over-
all performance of the system, the average of the performance
obtained for each subject is taken into account, with the stan-
dard deviation used as indicator of the stability of the achieved
results.

Table 2 shows the results, in terms of best CIR for differ-
ent sets of employed features, obtained for different combina-
tions of employed signals, shallow classifiers, and time win-
dow durations. The obtained results show that the considered
non-parametric classifiers are more efficient than the paramet-
ric one. Specifically, RF typically performs better than SVM.
More importantly, the best results are generally achieved when
exploiting the GB learning approach, testifying that the incre-
mental boosting strategy adopted in GB fits the available data
better than a bagging approach such as the one employed in RF.
This could imply that the available data are characterized by a
limited amount of noise, thus minimizing possible overfitting
risks (Friedman et al., 2009). The best results obtained with
shallow classifiers correspond to a CIR of 93.82% when using
the fusion of the spectrograms of the EDA and BVP compo-
nents, computed on window of length W = 20s, as input to the
GB classifier. The employed hyper-parameters are a learning
rate of 0.15, 120 estimators, and a maximum depth equal to 6.
The GB algorithm has also shown better stability, expressed in
terms of smaller standard deviation, in comparison to the other
standard classifiers.

A decrease of recognition performance is typically observed
with a decrease of the window size. However, when combined
representations of EDA and BVP features are used as inputs to
GB classifiers, the obtained recognition rates remain pretty sta-
ble, guaranteeing good performance also when exploiting very
short segments.

The recognition rates achieved when training the considered
shallow classifiers over combined representations of BVP and
EDA features are typically better than those achieved when ex-
ploiting individual modalities. This confirms the usefulness of
the proposed approach relying on multiple sources to perform
recognition. Some exceptions to this general behavior can be
found, when using SVM or RF classifiers, in cases of large dis-
crepancies between the results achieved using separately EDA
or BVP features.

Table 3 shows the performance, in terms of correct identifica-
tion rate, obtained when exploiting the considered deep learn-
ing approaches, that is, CNNs relying on VGG-16 and Mo-
bileNetV2, and LSTM networks. While these latter achieve
performance comparable to the best shallow classifier, i.e., GB,
the employed CNNs outperform both the consider standard ma-
chine learning algorithms and LSTM. The CNNs are also gen-
erally more stable, in terms of performance standard devia-
tion, compared to the shallow classifiers. In more detail, the
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Table 2: Performance of the considered shallow classifiers in terms of CIR, reported as mean ± standard deviation. Best performance in bold.

Signal
SVM RF GB

W = 30s W = 20s W = 10s W = 30s W = 20s W = 10s W = 30s W = 20s W = 10s

EDA 28.37 ±26.37% 23.14 ±23.86% 12.60 ±12.32% 58.83 ±17.46% 48.94 ±17.87% 35.31 ±17.91% 91.01 ± 6.52% 91.83 ± 5.67% 91.65 ± 5.74%

BVP 63.03 ±17.01% 47.55 ±18.29% 16.14 ±9.26% 79.68 ±8.97% 67.70 ±10.00% 35.90 ±17.68% 86.69 ±7.30% 86.72 ±6.86% 86.62 ±7.25%

Fusion 56.89 ±21.67% 67.10 ±15.96% 45.63 ±18.47% 73.68 ±12.53% 59.94 ±16.26% 44.14 ±16.15% 93.55 ±4.29% 93.82 ± 4.19% 93.30 ±4.12%

Table 3: Performance of the employed deep learning approaches in terms of CIR, reported as mean ± standard deviation. Best performance in bold.

Signal
VGG-16 MobileNet v2 LSTM

W = 30s W = 20s W = 10s W = 30s W = 20s W = 10s W = 30s W = 20s W = 10s

EDA 86.18 ± 11.26% 91.71 ± 8.28% 90.14 ± 7.07% 92.69 ± 5.56% 94.91 ± 3.90 % 94.31 ± 4.43% 59.00 ± 23.15% 59.02 ± 21.35% 58.88 ± 19.78%

BVP 96.29 ± 3.10% 94.90 ± 3.45 % 80.19 ± 9.68% 96.23 ± 2.86% 95.12 ± 3.27 % 91.46 ± 4.10% 92.42 ± 5.83% 92.91 ± 6.11% 92.44 ± 5.83%

Fusion 98.13 ± 2.09% 96.83 ± 2.35% 97.62 ± 1.81 % 98.58±1.49% 97.66 ± 2.06% 97.28 ± 2.46% 92.84 ± 5.95% 93.30 ± 5.85% 91.03 ± 5.46%

best recognition results are obtained when resorting to time-
frequency features extracted from a window of size W = 30s,
and using them as input to CNNs. CIR at 98.13% for the VGG-
16, and 98.58% in case of MobileNetv2 are obtained 2. In gen-
eral, this latter architecture guarantees the best recognition per-
formance. It is worth remarking that MobileNetV2 has been
designed to be optimized for mobile devices, thus entailing the
possibility of its use in real-life scenarios, where the recogni-
tion procedure is carried out by a smartphone connected to a
wearable device, or by the device itself.

Differently from what observed when using shallow classi-
fiers, the behavior of deep learning approaches when varying
the length of the employed inputs is less predictable. In fact, al-
though recognition performance generally worsens when short-
ening the employed time window, it also happens that the best
results for EDA are achieved for the shortest inputs. This may
be due to the larger number of training samples available when
resorting to smaller time windows, and to the capability of the
employed networks to effectively exploit such greater amount
of data for achieving improvements in recognition performance.
The possibility of achieving good recognition performance with
time windows as short as 10s implies the feasibility to design
highly-performing recognition systems requiring an acceptable
recognition time.

It is worth mentioning that, in the performed experimental
tests, also fusion at the score level has been employed to com-
bine the information from BVP and EDA signals. Nonetheless,
the best recognition results have been achieved when resort-
ing to feature-level fusion, which has been therefore reported.
Such behavior demonstrates that the employed CNNs are not
only able to provide classification accuracies better than those
achievable through shallow classifiers, yet they are also able to
effectively exploit joint representations of EDA and BVP sig-
nals. Better results are obtained when CNNs are trained over
combined representations of the employed data rather than per-
forming separate training over disjoint representations, and then
fusing the produced output scores.

2The trained model is available at https://github.com/emapici/
wearable-biometrics-cnn

7. Limitations of the present work

Despite the presented promising results, further research is
needed to perform an in-depth analysis about the effectiveness
of using physiological signals collected through SWDs to per-
form biometric recognition.

First of all, the present study has been conducted on a limited
set of subjects. It would be therefore important to collect signals
using commercial SWDs from a larger number of users, and
exploit such data to conduct further analysis.

Moreover, although the performed study demonstrates the
existence of discriminative characteristics in EDA and BVP sig-
nals collected in two different days separated by a week, mul-
tiple recording sessions performed at increasing time distances
from the first one should be considered in order to further spec-
ulate about the permanence of the employed traits. The avail-
ability of multiple acquisition sessions could be also exploited
to evaluate the possibility of improving the achievable recog-
nition rates, employing for instance samples acquired during
different enrolment sessions, to be able to collect more infor-
mation regarding the variability of the employed data and then
designing template update strategies.

It has also to be mentioned that, although the employed data
have been collected asking participants to attend, or to teach,
lectures still behaving as they would have normally done, the
specific classroom settings might have limited the range of pos-
sible movements, with a possible impact on collected record-
ings and on the obtained recognition performance. Therefore,
for future developments, it would be interesting to investigate
the role of different operative scenarios on the achievable recog-
nition performance, evaluating field conditions in completely
unconstrained real-life environments.

Furthermore, in this work we have focused our analysis only
on user identification, while verification scenarios could be also
considered in future investigations.

Lastly, it is worth mentioning that, in the performed tests, we
have trained the employed models using, for each subject, data
recorded during two lectures, for a total of 60 minutes. Even
though the proposed approach has guaranteed good recognition
performance while using very short identification probes, the
amount of time needed for the user’s enrolment in a real sce-
nario might be too long. Therefore, an evaluation of the effects

 https://github.com/emapici/wearable-biometrics-cnn
 https://github.com/emapici/wearable-biometrics-cnn
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of shortening the enrolment acquisition duration on the recog-
nition performance could be beneficial to assess the feasibility
this system in real-life applications.

8. Conclusions
In this work we have evaluated the feasibility of identifying

subjects exploiting physiological signals gathered with off-the-
shelf wearable devices, collecting data in practical conditions.
Using the fusion of the EDA and BVP spectrograms as input
to a MobileNet-v2 network, we have achieved an average CIR
at 98.58%, comparing samples taken from 17 subjects at a time
distance of a week. We have also verified the superiority of
deep learning models, based on CNNs, over shallow classifiers
to achieve higher recognition performance. We have also ana-
lyzed the impact of the selected window length in the recogni-
tion performance, showing that our approach guarantees good
recognition performance even when only 10-second identifica-
tion probes are used. The methods presented in this study could
be integrated into wearable devices for enabling a fast and re-
liable user identification, and preventing unauthorized usage of
these devices. Although additional research, using databases
involving a high number of subjects and comprising multiple
sessions, as well as evaluating proper training strategies to de-
rive feature representations usable within verification scenar-
ios, is needed to further speculate on the drawn conclusions,
the present study represents the first evidence that physiologi-
cal signals collected through commercial SWDs could be em-
ployed to perform biometric recognition while normally carry-
ing out real-life activities.
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