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ABSTRACT

The accurate localization of facial landmarks is at the core of face analysis tasks, such as face recog-
nition and facial expression analysis, to name a few. In this work, we propose a novel localization
approach based on a deep learning architecture that utilizes cascaded subnetworks with convolutional
neural network units. The cascaded units of the first subnetwork estimate heatmap-based encodings of
the landmarks’ locations, while the cascaded units of the second subnetwork receive as input the out-
put of the corresponding heatmap estimation units, and refine them through regression. The proposed
scheme is experimentally shown to compare favorably with contemporary state-of-the-art schemes,
especially when applied to images depicting challenging localization conditions.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The localization of facial landmark points, such as eyebrows,
eyes, nose, mouth, and jawline, is one of the core computational
components in visual face analysis, with applications in face
recognition (Huang et al., 2013), kinship verification (Mahpod
and Keller, 2018), and facial attribute inference (Kumar et al.,
2008), to cite a few. Robust and accurate localization entails
several difficulties, due to variations in face pose, illumination,
and resolution, as well as to occlusions, as depicted in Figure 1.

Traditional approaches for facial landmark localization have
relied on appearance models, providing parametric or non-
parametric descriptors of a face shape. In this context, fit-
ting strategies have been defined to minimize the residual error
between the training face images and their synthesized model
(Cootes and Taylor, 1992).

Regression-based approaches have been then successfully
proposed, showing improved accuracy compared to their pre-
decessors, especially when applied to in-the-wild face images
(Cao et al., 2012). Starting from an initial estimate of the land-
marks’ positions, typically obtained computing local image fea-
tures from an average face template, a high-dimensional regres-
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Fig. 1. Facial landmark localization. Each image feature, marked by a
point, is considered a particular landmark, and is localized individually.
(a) A frontal face image from the XM2VTS datasets (Messer et al., 2003).
(b) An image from the Helen dataset (Le et al., 2012) with non-frontal pose
and expression variation, making the localization challenging.

sion model is iteratively estimated. Besides achieving high lo-
calization accuracy, these schemes are also computationally ef-
ficient, commonly requiring less than 1ms processing time per
frame (Ren et al., 2014). Yet, given that they rely on an initial
estimate of the landmarks’ positions, they are in general limited
to yaw, pitch, and head roll angles of less than 30◦, and are thus
susceptible to initialization and convergence issues. Contempo-
rary approaches might therefore underperform when employed
in challenging conditions (Shao et al., 2017).

Further improvements in facial landmarks localization have
been achieved with the exploitation of deep-learning-based ap-
proaches. In particular, a notable innovation allowed by con-
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Fig. 2. Outline of the proposed CCNN framework. The CCNN consists of
base CNNs, preceding the cascaded heatmap subnetwork (CHCNN) esti-
mating the heatmaps, and the cascaded regression CNN (CRCNN) refining
the heatmaps localization via point-wise regression.

volutional neural networks (CNNs) has consisted in the ame-
lioration of heatmap-based techniques, following the seminal
work of Pfister et al. (2015). Heatmaps are general-purpose
descriptors which can be employed to represent sets of points.
Typically, they can be obtained by applying smoothing filters,
such as diffusion kernels, to characterize a point depending on
the geometry of its surroundings (Coifman and Lafon, 2006).
Although generating heatmaps through CNNs has guaranteed
state-of-the art results in terms of robustness, the achievable lo-
calization accuracy is inherently limited, due to the coarse spa-
tial resolution of the created heatmaps, typically much lower
than the one of the original image.

In this work we exploit the upsides of the most com-
monly employed regression- and heatmap-based approaches,
by proposing a novel deep-learning-based framework for facial
landmark localization, formulated as a cascaded CNN (CCNN)
comprising two paired cascaded heatmap and regression sub-
networks. An outline of the architecture of our proposed CCNN
is depicted in Figure 2. In more detail, the cascaded heatmap
subnetwork (CHCNN) consists of multiple successive heatmap-
based localization units, which perform a robust and coarse
localization. The following cascaded regression CNN (CR-
CNN) subnetwork refines the heatmap-based localization per-
forming a coarse-to-fine estimate. Cascaded architectures have
been employed in the proposed subnetwork due to their proven
ability in improving the localization accuracy of regression-
and heatmap-based schemes. The cascaded layers in both the
CHCNN and CRCNN are non-weight-sharing, allowing each
to separately learn a different localization range. The proposed
CCNN is experimentally shown to compare favourably with
contemporary state-of-the-art face localization schemes. Al-
though this work exemplifies the use of the proposed approach
in the localization of facial landmarks, it is of general applica-
bility, and can be used for any class of objects.

Thus, the contributions of this work are as follows:

• we derive a CNN-based face localization scheme using a
coarse and robust heatmap estimate, followed by a subse-
quent regression-based refinement;

• the heatmap estimation and regression tasks are performed

by cascaded subnetworks, that allow an iterative refine-
ment of the localization accuracy. To the best of our
knowledge, this is the first such formulation of the face
localization problem;

• the proposed CCNN framework is experimentally shown
to outperform contemporary state-of-the-art approaches.

A review of the major contributions in literature regarding
facial landmarks localization is provided in Section 2. The
proposed CCNN architecture is then detailed in Section 3, and
its effectiveness is outlined through the experimental tests dis-
cussed in Section 4. Conclusions are finally drawn in Section
5.

2. State-of-the-Art: Facial Landmark Point Localization

The localization of facial landmark points is a fundamental
computer vision task that has been studied in a multitude of
works, dating back to the seminal works on active shape mod-
els (ASMs) (Cootes and Taylor, 1992), active appearance mod-
els (AAMs) (Cootes et al., 2001), and constrained local models
(CLMs) (Cristinacce and Cootes, 2006), which have paved the
way for recent localization schemes. Classical face localiza-
tion schemes utilize either parametric (Cristinacce and Cootes,
2006) or non-parametric (Belhumeur et al., 2013) models to
learn the statistical distribution of face landmark points, in or-
der to provide the actual position of the interested locations in
the treated images, trying to deal with significant appearance
and pose variations.

More recently, state-of-the art results on facial landmarks lo-
calization have been achieved by resorting to regression- and
heatmap-based methods, and exploiting deep learning strate-
gies to learn high-level facial features. The following subsec-
tions provide an overview of the most relevant works resorting
to such approaches.

2.1. Cascaded Shape Regression Schemes
Cascaded Shape Regression (CSR) (Trigeorgis et al., 2016)

schemes localize landmark points through an iterative process,
where regression estimates are progressively refined using lo-
cal image features, computed at the selected landmarks’ loca-
tions, as inputs. Such schemes are commonly initialized with
an estimate of the landmarks based on an average face template,
and a bounding box of the face provided by a detector such as
Viola-Jones (Viola and Jones, 2001). CSR-based approaches
have been shown to be computationally efficient by applying
fast regression cascades, yet their convergence, and the result-
ing localization accuracy, might be susceptible to an inaccurate
initialization. Actually, as the common initialization of the face
landmarks corresponds to frontal head poses, CSR schemes are
typically limited to yaw, pitch, and head roll angles of less than
30◦.

Notable examples of employed local features include scale-
invariant feature transform (SIFT) characteristics (Lowe, 2004),
used in the supervised descent method (SDM) proposed by
Xiong and De la Torre (2013). Local binary features (LBFs)
have been instead employed to estimate facial landmarks’ loca-
tions through regression trees in Ren et al. (2014), with a low
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required computational complexity allowing to process images
at 3000 fps. Computationally efficiency has been also sought in
Chen et al. (2014), where random forests regression has been
applied to Haar-like local image features.

An explicit shape regression (ESR) is performed in Cao
et al. (2012), where a vectorial regression function inferring the
whole set of facial landmarks is directly learned from the input
image, designing a two-level boosted regression using shape-
indexed and correlation-based features. A unified model for
face detection, pose estimation, and landmark localization has
been instead suggested in Zhu and Ramanan (2012). The facial
features and their geometrical relations are there encoded by the
vertices of a graph, while the regression inference is obtained
resorting to a mixture of trees, learned using a training set, with
a shared pool of parts. An iterative coarse-to-fine shape search-
ing (CFSS) refinement method has been introduced in Zhu et al.
(2015), where the initial coarse solution allows to constrain the
search space of the finer shapes, thus allowing to avoid subop-
timal local minima, and improving the estimation of large pose
variations.

2.2. Deep Learning-based Schemes

Deep learning techniques have been applied to face landmark
localization in Zhang et al. (2016), where a multi-task estima-
tion of facial attributes, such as gender, expression, and ap-
pearance attributes has been performed using a task-constrained
deep convolutional network (TCDCN), guaranteeing robust and
accurate estimates. The authors of Chen et al. (2017) have in-
stead proposed a 4-stage coarse-to-fine framework (CTFF) for
landmark localization, with the interested points first coarsely
predicted, and then refined by extracting multi-scale patches.
An attention gate network applied to fuse all results.

A joint usage of deep learning techniques and regression-
based schemes has been proposed in Trigeorgis et al. (2016)
with the mnemonic descent method (MDM), where feature
learned through a CNN are processed through regression, thus
yielding an end-to-end trainable scheme.

A framework based on cascaded CNN regressions, which
progressively refine localization, has been introduced in Xiao
et al. (2016). The landmark locations are there sequentially
improved at each stage, allowing the more reliable ones to be
processed earlier. The proposed recurrent attentive-refinement
(RAR) approach uses long short-term memory (LSTM) net-
works to identify reliable landmarks, and refine their localiza-
tion. Recurrent networks have been also employed in Lai et al.
(2017), where a deep recurrent regression (DRR) approach has
been designed, by leveraging on deep shape-indexed features
and recurrent shape features to learn the connections between
the regressions. A sequential linear regression has been used to
learn and update the shapes.

In (He et al., 2017b), the authors have combined cascaded
shape regression with a CNN, applying a fully end-to-end cas-
caded CNN (FEC-CNN) (He et al., 2017a) as a backbone net-
work. Differently from the SDM approach in Xiong and De
la Torre (2013), which learns a cascaded linear regression us-
ing projection matrices of SIFT descriptors, the FEC-CNN ap-
proach extracts differentiable shape-indexed patches, and feeds
them into the subnetworks to predict the shape residual for the

next step of the regression refinement. A deep alignment net-
work (DAN) based on a cascaded CNN, where each stage re-
fines the landmark positions estimated by the preceding one,
has been also presented in (Kowalski et al., 2017). In order to
extract features from the entire face, instead of relying on local
patches, heatmaps are employed at the initialization stage of the
DAN method to provide visual information about landmark lo-
cations. A landmark heatmap is an image with high intensity
values around the interested landmark locations, and intensity
decreasing proportionally to the distance from the nearest land-
mark. Differently from the approaches mentioned in the fol-
lowing subsections, and also from our approach, the heatmpas
employed in the DAN method are not estimated through CNNs,
but used solely as a mean for transferring information between
stages (Kowalski et al., 2017).

2.3. Heatmap-based Schemes

Exploiting multiple convolution layers and nonlinear ac-
tivation functions, deep learning approaches have been also
employed to deal with landmarks localization by creating
heatmaps significantly different than the ones obtained through
classical approaches (Coifman and Lafon, 2006), thus provid-
ing the means for achieving high robustness. Facial landmark
localization and human pose estimation have been first per-
formed resorting to heatmaps and CNNs to detect the Synovial
joints (Pfister et al., 2015), with the optical flow used to fuse
heatmap predictions from consecutive frames. This approach
has been extended (Belagiannis and Zisserman, 2017) by deriv-
ing a cascaded heatmap estimation subnetwork, consisting of
multiple heatmap regression units, where the heatmap is esti-
mated progressively such that each heatmap regression unit is
given its predecessor’s output. The obtained localization esti-
mates are characterized by a high robustness. However, their
accuracy is inherently limited by the coarse spatial resolution
of the generated heatmaps, typically in the order of 1/4th with
respect to the input image. This kind of approach is of particu-
lar interest in our work, which is based on heatmap estimation
refined through a cascaded regression subnetwork.

A two-stage architecture (TSA), where heatmaps are first es-
timated through a basic landmark prediction stage, and then re-
fined using a whole landmark regression stage made of a set
of shape regression subnetworks, each adapted and trained for
a particular pose, has been proposed in Shao et al. (2017).
As the varying appearances of the face images might reduce
the localization accuracy, Dong et al. (2018) have proposed a
style aggregated network (SAN), that exploits a generative ad-
versarial network (GAN) to compute an appearance-invariant
face representation. This aggregates varying face appearances,
such as dark and light faces images, and improves the localiza-
tion accuracy. A conditional GAN (CGAN) has been instead
employed by Chen et al. (2020) to induce geometric priors on
the face landmarks, by introducing a discriminator that classi-
fies real vs. erroneous (“fake”) localizations.

The aforementioned approaches, representing the state of the
art on facial landmark localization using either regression- or
heatmap-based methods, are taken into account in Section 4 to
compare the performance achievable with the proposed frame-
work, with the results currently available in literature.
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Fig. 3. Outline of the proposed CCNN localization network. The input im-
age is encoded by two Base subnetworks, BaseCNN1 and BaseCNN2. Their
outputs are processed by the Cascaded Heatmap CNN (CHCNN), made of
heatmap estimation units (HMUs), and refined by the Cascaded Regres-
sion CNN (CRCNN), consisting of landmark regression units (LRUs).

3. Proposed Face Localization using a Cascaded CNN

A face landmarks localization task consists in searching for
a set of points P =

{
p(i)

}N

1
, such that p(i)=[x(i), y(i)]T , in an im-

age I ∈ Rw×h×3, corresponding to pre-established facial fiducial
points. The number N of data to be estimated relates to the
used annotation convention. Figures 2 and 3 depict the general
and detailed architecture of the proposed CCNN, respectively,
comprising a total of three sub-networks.

The heatmap is used as a state variable initiated by the base
subnetwork (Section 3.1), and is iteratively refined by applying
two complementary losses:

• the heatmap-based loss, (Section 3.2), that induces the
graph structure of the detected landmarks, and

• the coordinates-based representation, refined by pointwise
regression (Section 3.3).

The first part of our network is a pseudo-siamese (non-
weight-sharing) sub-network consisting of two subnetworks
{BaseCNN1, BaseCNN2}, which compute the corresponding
feature maps {F1,F2} of the input image, and an initial heatmap
estimate.

The second subnetwork is a cascaded heatmap CNN
(CHCNN) that robustly estimates a single 2D heatmap per
facial feature location. Examples of the generated heatmaps
are depicted in Figure 4. The CHCNN consists of K cas-
caded heatmap estimation units, each estimating a 3D heatmap
Ĥk ∈ R w

s ×
h
s ×N , with k = 1, . . . ,K. The size of the obtained

heatmaps depends on the scale factor s. The cascaded formula-
tion implies that the kth heatmap unit (HMU) receives as inputs
the heatmap Ĥk−1 estimated by its predecessor, along with the
feature map F2. The HMUs are non-weight-sharing, as each
unit refines a different estimate of the heatmaps, thus learning
a different regressor. Our scheme therefore differs from the
heatmap-based pose estimation of Belagiannis and Zisserman
(2017), which employs weight-sharing cascaded units. Each
HMU is trained using the loss:

LHM =
s2

whN

w
s ,

h
s ,N∑

y,x,i=1

[
Hk (x, y, i) − Ĥk(x, y, i)

]2
, (1)

where Hk ∈ R w
s ×

h
s ×N , k = 1, . . . ,K, represent the ground-truth

heatmaps, derived from the ground-truth set of points P by ap-
plying to each landmark a 2D symmetric Gaussian filter with
standard deviation σ.

The landmark estimates P̂k = {p̂(i)
k }

N
1 of each HMU are ob-

tained as the locations of the maxima of Ĥk, that is, p̂(i)
k =

argmaxx,y Ĥk(x, y, i). Such points, computed on a coarse grid,
are then refined by the third subnetwork, i.e., the cascaded re-
gression CNN (CRCNN). This latter consists of K cascaded
landmark regression units (LRUs), with the kth LRU receiving
as input the output of its preceding LRU, that is, Ek−1, the out-
put Hk of the corresponding HMU, and the outputs of the base
subnetworks, namely F1, F2, and HE. Each LRU applies a re-
gression loss to improve the heatmap-based landmark estimate,
by computing the refinement R̂k,

R̂k = vec (P) − vec
(
P̂k

)
, (2)

where vec (·) is a vectorized replica of the N points in a set.
Equation 2 is optimized using the landmark loss function

LLM =
1

2N

2N∑
i=1

(
Rk (i) − R̂k (i)

)2
, (3)

where Rk ∈ R2N are the distances (separately for the horizon-
tal and vertical directions) between the ground-truth landmarks
and the estimates computed by the heatmaps.

The details of the designed subnetworks are reported in the
following. All convolutional layers of the proposed CCNN are
implemented with a subsequent batch normalization layer.

3.1. Base Subnetwork

The proposed Base subnetwork consists of two pseudo-
siamese (non-weight-sharing) units, indicated as BaseCNN1
and BaseCNN2 and detailed in Table 1. The input of the net-
work is a face image I ∈ R256×256×3, having set w = h = 256.

The first part of both BaseCNN1 and BaseCNN2, comprising
layers A1-A7 from Table 1, computes feature maps from the
input image using 3×3 filters, and it is indicated as feature map
unit (FMU) in Table 1 and Figure 3. The size of the produced
feature maps is the same as that of the employed heatmaps, and
it is set by using s = 4 in the designed architecture. Following
the vast majority of contemporary works on facial landmark
localization, and in order to adhere to the 300-W competition
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Fig. 4. Visualizations of facial landmarks localization heatmaps. The first row shows the face images, while the second row depicts a corresponding single
heatmap of a particular facial feature. The third row shows the corresponding N = 68 points of all heatmap.

Table 1. Base subnetwork architecture. Two such non-weight-sharing units
are used over here as depicted in Figure 3.

(a): FMU1/FMU2

Layer Feature Map FSize Stride Pad
Input: I 256 x 256 x 3 - - -
A1-Conv 256 x 256 x 3 3 x 3 1 x 1 2 x 2
A1-ReLu 256 x 256 x 64 - - -
A2-Conv 256 x 256 x 64 3 x 3 1 x 1 2 x 2
A2-ReLu 256 x 256 x 64 - - -
A2-Pool 256 x 256 x 64 2 x 2 2 x 2 0 x 0
A3-Conv 128 x 128 x 64 3 x 3 1 x 1 2 x 2
A3-ReLu 128 x 128 x 64 - - -
A4-Conv 128 x 128 x 64 3 x 3 1 x 1 2 x 2
A4-ReLu 128 x 128 x 128 - - -
A4-Pool 128 x 128 x 128 2 x 2 2 x 2 0 x 0
A5-Conv 64 x 64 x 128 3 x 3 1 x 1 2 x 2
A5-ReLu 64 x 64 x 128 - - -
A6-Conv 64 x 64 x 128 3 x 3 1 x 1 2 x 2
A6-ReLu 64 x 64 x 128 - - -
A7-Conv 64 x 64 x 128 1 x 1 1 x 1 -
Output: F1/F2 64 x 64 x 68 - - -

(b): HMUE /HMU1

Layer Feature Map FSize Stride Pad
Input: F1/F2 64 x 64 x 68 - - -
A8-Conv 64 x 64 x 68 9 x 9 1 x 1 8 x 8
A8-ReLu 64 x 64 x 68 - - -
A9-Conv 64 x 64 x 128 9 x 9 1 x 1 8 x 8
A9-ReLu 64 x 64 x 128 - - -
A10-Conv 64 x 64 x 128 1 x 1 1 x 1 0 x 0
A10-ReLu 64 x 64 x 256 - - -
A11-Conv 64 x 64 x 256 1 x 1 1 x 1 0 x 0
A11-ReLu 64 x 64 x 256 - - -
A11-Dropout(0.5) 64 x 64 x 256 - - -
A12-Conv 64 x 64 x 256 1 x 1 1 x 1 0 x 0
A12-ReLu 64 x 64 x 68 - - -
Output:HE/Ĥ1 64 x 64 x 68 - - -

guidelines (Trigeorgis et al., 2016; Tuzel et al., 2016), N = 68 is
employed in the designed architecture, thus resulting in feature
maps F1,F2 ∈ R64×64×68. The subsequent layers A8-A12 make
up the heatmap units HMUE and HMU1, which estimate the N
heatmaps (one per facial feature) by applying 9 × 9 filters to
encode the relations between neighboring facial features.

Table 2. Heatmap estimation unit HMUk , k = 2, . . . , 4. The input to each
HMU is the output of the previous one, combined with the feature map F2.

Layer Feature Map FSize Stride Pad
Input: F2 ⊕ Ĥk−1 64 x 64 x 136 - - -
B1-Conv 64 x 64 x 136 7 x 7 1 x 1 6 x 6
B1-ReLu 64 x 64 x 64 - - -
B2-Conv 64 x 64 x 64 13 x 13 1 x 1 12 x 12
B2-ReLu 64 x 64 x 64 - - -
B3-Conv 64 x 64 x 64 1 x 1 1 x 1 0 x 0
B3-ReLu 64 x 64 x 128 - - -
B4-Conv 64 x 64 x 128 1 x 1 1 x 1 0 x 0
B4-ReLu 64 x 64 x 68 - - -
Output: Ĥk 64 x 64 x 68 - - -
LHM regression loss

Table 3. Landmark regression unit LRUk , k = 1, . . . , 4. The input to each
LRU is the output of the previous one, the output of corresponding HMU,
and the feature maps F1 and F2.

(a): RFMUk

Layer Feature Map FSize Stride Pad
Input:
F1 ⊕ F2 ⊕ Ĥk ⊕HE 64 x 64 x 272 - - -
C1-Conv 64 x 64 x 272 7 x 7 2 x 2 5 x 5
C1-Pool 32 x 32 x 64 2 x 2 1 x 1 1 x 1
C2-Conv 32 x 32 x 64 5 x 5 2 x 2 3 x 3
C2-Pool 16 x 16 x 128 2 x 2 1 x 1 1 x 1
C3-Conv 16 x 16 x 128 3 x 3 2 x 2 1 x 1
C3-Pool 8 x 8 x 256 2 x 2 1 x 1 1 x 1
Output: Ek 8 x 8 x 256 - - -

(b): RLEUk

Layer Feature Map FSize Stride Pad
Input : Ek ⊕ Ek−1 8 x 8 x 512 - - -
C4-Conv 8 x 8 x 512 3 x 3 2 x 2 1 x 1
C4-Pool 4 x 4 x 512 2 x 2 1 x 1 1 x 1
C5-Conv 4 x 4 x 512 3 x 3 2 x 2 1 x 1
C5-Pool 2 x 2 x 1024 2 x 2 1 x 1 1 x 1
C6-Conv 2 x 2 x 1024 1 x 1 1 x 1 0 x 0
Output : R̂k 1 x 1 x 136 - - -
LLM regression loss

BaseCNN1 and BaseCNN2 are trained using different losses
and backpropagation paths, as depicted in Figure 3. Specifi-
cally, the first Base subnetwork, together with its outputs HE
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and F1, is connected to the CRCNN subnetwork, and is there-
fore trained by backpropagating its losses LLM . Thus, HE is
adapted to the regression task. On the other hand, BaseCNN2
has two outputs, that is, the initial heatmap estimation Ĥ1 and
the feature map F2, which are forwarded to both the CHCNN
and the CRCNN subnetworks, with both the losses LHM and
LLM involved in the backpropagation process.

3.2. Cascaded Heatmap Estimation CNN (CHCNN)
The heatmaps Ĥk, k = 1, . . . ,K, are estimated in a coarse

resolution of 1/s, with s = 4, of the input image resolution.
As shown in Figure 3, K = 4 HMUs are employed in the im-
plementation of the proposed CCCN localization network. The
structure of the HMUs used in the designed CHCNN is detailed
in Table 2.

The cascaded architecture of the CHCNN implies that each
HMU estimates a heatmap Ĥk using the heatmap Ĥk−1 received
from the preceding unit, and the feature map F2 estimated by
the base subnetwork BaseCNN2. Such joint input is shown in
Table 2 as F2⊕Ĥk−1, with ⊕ denoting the concatenation of vari-
ables along their third dimension. The HMU architecture com-
prises wide filters of sizes [7 × 7] and [13 × 13], corresponding
to the B1-Conv and B2-Conv layers, respectively. These layers
encode the geometric relationships between relatively distant
landmarks. Each heatmap is trained using LHM (Eq. 1), with
the locations of the facial landmarks labeled by narrow Gaus-
sians with σ = 1.3 to improve training convergence.

3.3. Cascaded Regression CNN (CRCNN)
The CRCNN is applied to refine the robust, but coarse, land-

mark estimates of the CHCNN. The CRCNN comprises K = 4
LRUs, whose framework is detailed in Table 3. Specifically, the
input to the kth regression unit is obtained as the concatenation
F1 ⊕ F2 ⊕ Ĥk ⊕ HE between the feature maps F1 and F2 com-
puted by the base CNNs, the corresponding heatmap estimate
Ĥk, and the activation map HE computed by BaseCNN1.

Specifically, each LRUs consists of two succeeding parts:

• a regression feature map unit (RFMU), consisting of layers
C1-C3 in Table 3, which computes the activation map Ek;

• a residual localization error unit (RLEU), comprising lay-
ers C4-C6 in Table 3, that estimates the residual localiza-
tion error R̂k.

The output of the kth regression unit is the refinement term
R̂k as in Eq. 2 and Table 3. The network is trained using LLM

(Eq. 3), and the final residual localization estimate is given by
the last regression unit.

4. Experimental Results

The proposed CCNN scheme has been experimentally evalu-
ated on the image datasets typically considered in contemporary
state-of-the-art works, in order to take into account distinct ap-
pearance and acquisition conditions of the considered face im-
ages. Specifically, we have performed tests on the 300-W com-
petition dataset (Sagonas et al., 2016), a state-of-the-art face
localization dataset comprising 3, 837 near-frontal face images,
and on the Caltech occluded faces in the wild (COFW) dataset

(Burgos-Artizzu et al., 2013), a challenging dataset consisting
of 1, 007 faces depicting a wide range of occlusion patterns.
The results obtained on the two considered datasets are respec-
tively shown in Section 4.1 and 4.2. An ablation study, whose
results are outlined in Section 4.3, has been also performed to
analyze the specific contribution of each component of the pro-
posed CCNN architecture.

All considered RGB images have been resized to 256 × 256
pixels, with their values normalized to the range [−0.5, 0.5].
Training images have been augmented using color variations,
rotation by small angles, scaling, and translations. The learn-
ing rate has been changed gradually, starting with 10−5 for the
initial 30 epochs, followed by 5 × 10−6 for the following five
epochs, and then set to 10−6 for the remaining training epochs.
The CCNN has been trained for 2,500 epochs in total.

The localization accuracy per single face image has been
quantified through the normalized localization error (NLE) be-
tween the localized and ground-truth landmarks, that is,

NLE =
1

N · d

N∑
i=1

∥∥∥p̂(i) − p(i)
∥∥∥

2 , (4)

where p̂(i) and p(i) are the estimated and ground-truth coordi-
nates of a particular facial landmark, respectively. The nor-
malization factor d is either the inter-ocular distance (the dis-
tance between the outer corners of the eyes) (Ren et al., 2014;
Zafeiriou et al., 2017; Zhu et al., 2015), or the inter-pupil dis-
tance (the distance between the eye centers) (Trigeorgis et al.,
2016).

The localization accuracy for a set of images is quantified
by the average localization error and the failures rate. We
have considered as failures the estimates having a NLE greater
than α = 0.08 (Trigeorgis et al., 2016). We also report re-
sults in terms of area under the cumulative error distribution
curve (AUCα) (Trigeorgis et al., 2016; Tuzel et al., 2016), sum-
ming up the obtained error distributions up to α. The pro-
posed CCNN scheme has been implemented in Matlab and the
MatConvNet-1.0-beta23 deep learning framework (Vedaldi and
Lenc, 2015) using a NVIDIA Titan XP GPU.

4.1. 300-W Results
The 300-W competition dataset comprises images from five

dabases, namely LFPW, HELEN, AFW, IBUG, and 300-W pri-
vate1. Each image in the 300-W is annotated with 68 land-
marks, and accompanied by a bounding box generated by a face
detector. In the performed tests, the provided bounding boxes
have been expanded by 20% on all sides, with the resulting re-
gion of interest resized to 256 × 256 pixels.

As in the most established approaches (Kowalski et al.,
2017), the available data is divided into training and testing
parts (Lee et al., 2015). The former set consists of the AFW
dataset and subsets from the LFPW and HELEN datasets, for a
total of 3148 images. The proposed CCNN has been trained us-
ing the 300-W training set, together with the frontal face images

1The “300-W private test set” dataset was originally a private and propri-
etary dataset used for the evaluation of the 300W challenge submissions.
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Table 4. Facial landmarks localization results, in terms of NLE (%), on the 300-W common, challenging, LFPW, HELEN, public, and private datasets. Best
results on each dataset are marked in bold.

Category Paper Method Inter-ocular normalization Inter-pupil normalization
Common Challenging LFPW HELEN Public Private Common Challenging LFPW HELEN Public Private

CSR
Ren et al. (2014) LBF - - - - - - 4.95 11.98 - - 6.32 -
Zhu et al. (2015) CFSS - - 5.75 6.35 - 7.51 4.73 9.98 4.87 4.63 5.76 6.27

Kowalski and Naruniec (2016) k-cluster 3.34 6.56 - - 3.97 - - - - - - -

DL
Zhang et al. (2016) TCDCN - - 4.59 4.85 - 3.52 4.80 8.60 6.24 4.60 5.54 10.28
Chen et al. (2017) CTFF - - - - - - 3.73 7.12 - - 4.47 -

DL+CSR

Trigeorgis et al. (2016) MDM - - - - 4.05 5.05 - - - - - -
Xiao et al. (2016) RAR - - 3.99 4.30 - - 4.12 8.35 - - 4.94 -
Lai et al. (2017) DRR - - - - - - 4.07 8.29 4.49 4.02 4.90 -
He et al. (2017b) FEC-CNN - - - - - - 4.98 6.56 - - 5.14 -

DL+HM
Shao et al. (2017) TSA - - - - - - 4.45 8.03 - - 5.15 -
Dong et al. (2018) SAN 3.34 6.60 - - 3.98 - - - - - - -
Chen et al. (2020) CGAN - - - - - 3.96 - - - - - -

DL+HM+CSR Kowalski et al. (2017)
DAN 3.19 5.24 3.17 3.20 3.59 4.30 4.42 7.57 - - 5.03 -

DAN-Menpo 3.09 4.88 3.05 3.12 3.44 3.97 4.29 7.05 - - 4.83 -

DL+HM+CSR Proposed approach CCNN 3.23 3.99 3.30 3.20 3.44 3.33 4.55 5.67 4.63 4.51 4.85 4.74
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Fig. 5. CEDs vs. NLE results for the LFPW test set.

from the Menpo dataset (Zafeiriou et al., 2017), also annotated
with 68 landmark points. The profile faces of the Menpo dataset
have been instead annotated with 39 landmark points, and thus
could not have been used in our evaluation. The overall train-
ing set consists of 11, 007 images, out of which 2, 500 samples
have been randomly chosen and employed as validation set.

The test data consists of the remaining images from the 300-
W datasets, comprising samples from IBUG, 300-W private,
and the test sets from the LFPW and HELEN databases. In or-
der to facilitate comparisons with state-of-the-art methods, the
available test data is organized into a common subset, compris-
ing test samples from the LFPW and HELEN datasets (554 im-
ages), a challenging subset, given by the IBUG dataset (135
images), a 300-W public subset, consisting of all the test sam-
ples from the LFPW, HELEN, and IBUG datasets (689 images),
and the 300-W private test set (600 images).

In order to evaluate the effectiveness of the proposed ap-
proach, the results achieved with our CCNN architecture are
compared with the performance reported in most of the state-of-
the-art works mentioned in Section 2. All the approaches con-
sidered for comparison have been trained on the 300-W train-
ing dataset, while the methods in Chen et al. (2017), He et al.
(2017b), and Shao et al. (2017) have added the Menpo database
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Fig. 6. CEDs vs. NLE results for the HELEN test set.

Table 5. Facial landmarks localization results, in terms of AUC and failure
rate (FR, in %) for inter-ocular normalization, on the 300-W public and
private datasets. Best results on each dataset are marked in bold.

Category Paper Method Public Private
AUC0.08 FR AUC0.08 FR

CSR
Cao et al. (2012) ESR 43.12 10.45 32.35 17.00

Xiong and De la Torre (2013) SDM 42.94 10.89 - -
Zhu et al. (2015) CFSS 49.87 5.08 39.81 12.30

DL+CSR Trigeorgis et al. (2016) MDM 52.12 4.21 45.32 6.80
DL+HM Chen et al. (2020) CGAN - - 53.64 2.50

DL+HM+CSR Kowalski et al. (2017)
DAN 55.33 1.16 47.00 2.67

DAN-Menpo 57.07 0.58 50.84 1.83

DL+HM+CSR Proposed approach CCNN 57.88 0.58 58.67 0.83

for training, as also done for some tests of the DAN approach
Kowalski et al. (2017), whose results are therefore mentioned
in the following as either DAN or DAN-Menpo, depending on
the considered training dataset.

Table 4 reports the NLE performance achieved on the com-
mon and challenging subsets, as well as on the LFPW, HE-
LEN, public and private test datasets. The considered state-
of-the-art approaches are grouped into categories relying on
CSR, DL, and HM schemes, as mentioned in Section 2. The
localization results of the comparison schemes are quoted as
reported in the original papers. The obtained scores testify that
our CCNN approach compares favorably with respect to all the
other schemes. In particular, the proposed framework outper-
forms all previous approaches when applied to the challenging
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Fig. 7. CEDs vs. NLE results for the 300-W indoor test set.
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Fig. 8. CEDs vs. NLE results for the 300-W outdoor test set.

set, which comprises face images among the hardest to be pro-
cessed. This capability can be attributed to the use of a combi-
nation of cascaded heatmap estimation and regression units.

When applied to the LFPW and HELEN dataset, the pro-
posed CCNN is on par with existing state-of-the-art techniques,
as these datasets mostly consist of easy-to-localize frontal face
images. Figures 5 and 6 better detail the observed behaviors, re-
spectively reporting the cumulative error distributions (CEDs)
achieved on LFPW and HELEN datasets, when considering
inter-ocular normalization.

On the other hand, the proposed CCNN outperforms state-of-
the-art techniques on the 300-W private dataset, when consider-
ing both the inter-pupil and inter-ocular normalization. The ob-
tained results point out that our method is less sensitive to low
image quality, larger yaw angles, and facial deformations, with
respect to the comparison approaches. In fact, a consistent ac-
curacy over all considered image classes is achieved when em-
ploying the proposed CCNN. Conversely, the other approaches
show notable dependency on the considered scenario, perform-
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Fig. 9. CEDs vs. NLE results for the 300-W private test set.

ing well on frontal face images such as those in the HELEN and
LFPW datasets, yet tending to fail in challenging conditions
such as those in the 300-W private set. For instance, applying
the DAN and DAN-Menpo schemes (Kowalski et al., 2017) to
the challenging dataset, mean errors at 5.23% and 4.88% are
respectively obtained, whereas our method achieves a smaller
error equal to 3.99%. The ability in producing consistent re-
sults irrespective of the considered facial conditions is therefore
a core advantage of the proposed approach over contemporary
state-of-the-art schemes.

Further results are provided in Table 5, where the AUC0.08
measures and the localization failure rates of the proposed ap-
proach are compared against state-of-the-art schemes on the
300-W public and private datasets, for inter-ocular normaliza-
tion. The proposed CCNN outperforms all the other schemes
when applied to both test sets.

We have also performed tests on the indoor and outdoor sub-
sets of the 300-W private test set, as done during the 300-W
challenge (Sagonas et al., 2016). The results obtained in these
scenarios for inter-ocular normalization are reported in terms of
CEDs in Figures 7 and 8. The behaviors achieved with state-
of-the-art approaches are quoted from the results of the 300-W
challenge2 (Sagonas et al., 2016). Specifically, the 3D Shape
Model (Čech et al., 2016), M3CSR (Deng et al., 2016), CNN
Cascade (Fan and Zhou, 2016), L2,1Norm (Martinez and Val-
star, 2016), and Multi-view (Uřičář et al., 2016) approaches
have been taken into account.

The proposed CCNN scheme significantly outperforms all
contemporary schemes in both indoor and outdoor conditions.
For the sake of completeness, Figure 9 depicts the CEDs
achieved over the whole 300-W private test set.

Figure 10 shows some results applying the proposed CCNN
scheme to images in the 300-W indoor and outdoor test sets.
Red and green dots depict the ground-truth and the estimated

2https://ibug.doc.ic.ac.uk/media/uploads/competitions/

300w\_results.zip
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Fig. 10. Facial landmarks localization examples, with images taken from the 300-W test set. Red and green dots depict the ground-truth and estimated
landmark points by the proposed CCNN scheme, respectively.

Fig. 11. Facial landmarks localization examples for extremely difficult images, with images taken from the 300-W challenging test set. Red and green dots
depict the ground-truth and estimated landmark points by the proposed CCNN scheme, respectively. The sizes of the green dots increase according to the
error of the estimated landmarks. When the error is more than 20 pixels, a line connects the ground-truth and the estimated landmarks. When the error
is greater than 30 pixels then the landmark point dots are painted in blue.

landmark points, respectively. In particular, we show face im-
ages with relevant yaw angles, and facial expressions that sig-
nificantly differ from frontal faces. The localization of land-
marks on such images exemplifies the effectiveness of the pro-
posed CCNN framework.

On the other hand, in Figure 11 we report examples of the

landmarks detected in the 300-W challenging test set. There,
the size of green dots increases according to the error of the
estimated landmarks. When the error is greater than 20 pixels,
a line connecting the ground-truth with the estimated landmarks
is shown. When the error is greater than 30 pixels, the estimated
landmark dots are painted in blue.
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Fig. 12. CEDs vs. NLE results for the COFW test set.

4.2. COFW Results

Like the 300-W database, also the COFW dataset has been
annotated with 68 landmark points (Ghiasi and Fowlkes, 2015).
Following the procedure employed in previous works (Burgos-
Artizzu et al., 2013), we have used 500 images for training and
507 for testing the proposed network. The obtained accuracy
has been compared with the publicly available3 performance
achieved with state-of-the-art localization schemes (Ghiasi and
Fowlkes, 2015). In more detail, such results have been obtained
training the CFSS (Zhu et al., 2015) and TCDCN (Zhang et al.,
2016) schemes using the HELEN, LFPW, and AFW datasets.
The RCPR-occ scheme (Burgos-Artizzu et al., 2013) has been
trained using the same training sets as our CCNN model, while
the HPM, SAPM (Ghiasi and Fowlkes, 2015), SAN4(Dong
et al., 2018), and OpenFace5 (Zadeh et al., 2017) appraches
have been trained using the HELEN and LFPW datasets.

The comparative results are depicted in Figure 12 in terms of
CEDs, showing that the proposed CCNN approach significanlty
outperforms all the other considered schemes when employed
on the COFW dataset, furtherly testifying the effectiveness of
the proposed method in challenging conditions.

4.3. Ablation Study

In order to investigate the contribution of each element in
the proposed CCCN architecture, a detailed ablation study has
been performed focusing on several aspects characterizing the
proposed approach.

The influence on the achievable performance of the num-
ber K of cascaded units employed in the CHCNN (heatmaps)
and CRCNN (regression) subnetworks has been first evaluated.
For this purpose, we have trained the proposed CCNN using
K = {1, 2, 3, 4} cascades, with the same setup and training sets
outlined in Section 4.1, using the same test sets described in

3https://github.com/golnazghiasi/cofw68-benchmark
4https://github.com/D-X-Y/SAN
5https://github.com/TadasBaltrusaitis/OpenFace
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Fig. 13. Ablation study results for the proposed CCNN scheme: perfor-
mance in terms of AUC0.08 when varying the number of cascades in both
the CHCNN (heatmap) and CRCNN (regression) subnetworks.

Sections 4.1 and 4.2. The obtained results are depicted in Fig.
13 in terms of AUC0.08, showing that increasing the number
of employed cascaded units improves the achievable accuracy.
The most significant improvement is attained when using two
units instead of a single one, with additional cascades providing
relatively small gains.

Further studies have been conducted to assess the effects
of specific choices in the proposed CCNN design. The ob-
tained results are reported in Table 6 in terms of NLE achieved
over the 300-W Public, 300-W Private, and COFW datasets.
As baseline reference, the error rates obtained with the pro-
posed CCNN when trained for 2500 epochs, as in the tests de-
scribed in Section4.1 and 4.2, and for 300 additional epochs,
are reported in Table 6, showing that the proposed network has
reached a plateau of performance.

The usefulness of the CRCNN regression subnetwork in re-
fining the received outputs has been evaluated by performing
test relying only on the CHCNN heatmap subnetwork. To do
this, the BaseCNN1 and CRCNN subnetworks have been dis-
connected from the rest of the CCNN network trained for 2800
epochs, and an additional training has been carried out for a
further 20 epochs. A performance worsening is observed when
carrying out such tests, especially in terms of AUC0.08.

The importance of using two base subnetworks has been in-
vestigated in great detail, by first testing the performance of a
network in which both the F1 and F2 have been disconnected
from the CRCNN subnetwork. In order to do this, the input
layer of LRUs, that is, C1-Conv in Table 3, has been resized and
re-initialized. As in the previous case, the modified network has
been trained for several additional epochs. The same has been
done excluding only the F1 feature map from the CRCNN sub-
network. Furthermore, the whole BaseCNN1 subnetwork has
been removed from the rest of the architecture, thus letting the
landmark regression layers getting their information only from
F2 and Ĥk, k = 1, . . . ,K.

The relevance of the F2 feature map has been instead ad-
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Table 6. Ablation studies performed on the proposed CCNN architecture. Tests have been done on the 300-W Public, 300-W Private, and COFW datasets.
Results are given in terms of NLE (%), where the best performance marked as bold.

Tested condition Additional 300-W Public 300-W Private COFW
epochs NLE AUC0.08 NLE AUC0.08 NLE AUC0.08

Baseline CCNN 0 3.44 57.88 3.33 58.67 5.26 39.42
300 3.45 57.03 3.25 59.55 5.23 39.78

CRCNN removed (only CHCNN) 300 + 20 3.47 56.61 3.28 59.28 5.20 39.62

F1 and F2 removed from CRCNN 300 + 20 3.57 55.94 3.91 51.96 5.24 40.07
300+100 3.52 56.02 3.90 51.79 5.10 41.00

F1 removed from CRCNN 300 + 20 3.60 55.78 3.96 51.87 5.29 40.05
300+100 3.54 55.95 3.91 51.70 5.16 40.99

BaseCNN1 removed 300+20 3.54 55.92 3.90 51.99 5.24 40.43
300+100 3.55 55.80 3.93 51.74 5.14 41.14

F2 removed from CRCNN 300+20 3.62 55.54 3.99 51.30 5.27 40.33
300 + 100 3.54 55.94 3.93 51.48 5.13 40.90

F2 replaced by Ĥk in CRCNN
300+20 3.45 56.98 3.38 57.86 5.16 40.52

300+100 3.57 55.73 3.64 55.23 5.68 37.99

CHCNN and CRCNN with weight sharing 300+20 3.69 54.08 3.77 53.49 5.23 39.45
300+100 3.78 53.41 3.94 52.51 5.71 37.98

Only Ĥ4 as input for the CRCNN 300 3.53 55.92 3.91 51.50 5.12 41.08

K=6 cascaded units in CHCNN and CRCNN 300+300 3.45 57.02 3.26 59.67 5.13 40.41
300+500 3.45 57.02 3.27 59.62 5.13 40.44

dressed considering two distinct scenarios: in a first case, F2
is removed as input from the CRCNN subnetwork, and layer
C1-Conv is resized and re-initialized similarly to when F1 is
excluded. In a second case, F2 is replaced by Ĥk, k = 1, . . . ,K,
as input to each LRUk (with Ĥk therefore included twice in each
kth unit), so that C1-Conv can be kept with its original dimen-
sions, without the need for a re-initialization.

The need for training the proposed CCNN without resort-
ing to weight-sharing has been proven by testing a network
where units in the CHCNN and CRCNN subnetworks are in-
stead trained to share the same parameters, as in Belagiannis
and Zisserman (2017). The results reported in Table 6 testify
that such alternative degrades the achievable accuracy. The bet-
ter behavior of the proposed CCNN is attributed to the capabil-
ity of learning different regression functions per cascade.

We have also studied the possibility of using only the output
of the CHCNN layer, that is, the highest quality heatmap Ĥ4, as
input to all the LRUs in the CRCNN subnetwork. The obtained
results show that the proposed CCNN architecture, with paired
HMUs and LRUs, can achieve better performance.

Eventually, we have tested an architecture with two addi-
tional cascaded units, initialized with the weights from the 4th

cascade, in each of the CHCNN and CRCNN subnetworks.
A slight improvement has been in this case achieved over the
COFW test set, while the performance on the 300-W dataset
has not changed notably.

5. Conclusions

In this work, we have introduced a deep-learning-based
cascaded formulation for coarse-to-fine localization of facial
landmarks. The proposed cascaded CNN (CCNN) exploits
two paired cascaded subnetworks: the heatmap subnetwork
(CHCNN) estimates a coarse but robust heatmap corresponding
to the facial landmarks, while the cascaded regression subnet-
work (CRCNN) refines the accuracy of the CHCNN-generated
landmarks via regression. The two cascaded subnetworks are
aligned such that the output of each CHCNN unit is used as

an input to the corresponding CRCNN unit. This allows the
iterative refinement of the localization points. The CCNN is
a face localization scheme that is fully data-driven and end-to-
end trainable. It extends previous results on heatmap-based lo-
calization (Belagiannis and Zisserman, 2017), and it is experi-
mentally shown to be robust to large variations in head poses.
Moreover, it compares favorably with contemporary face lo-
calization schemes when evaluated using state-of-the-art face
alignment datasets. The proposed CCNN scheme does not uti-
lize any particular appearance attribute of faces, and can be ap-
plied to the localization of other classes of objects. Such an
approach might pave the way for other localization solutions,
such as those dedicated to sensor localization (Gepshtein and
Keller, 2015; Keller and Gur, 2011), where the initial estimate
of the heatmap is given by a graph algorithm, rather than an im-
age domain CNN. The succeeding CNN architecture could be
designed similarly to the proposed CHCNN and CRCNN sub-
networks, thus offering an opportunity for further extensions in
future works.
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