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EEG Biometrics Using Visual Stimuli:
A Longitudinal Study

Rig Das, Emanuele Maiorana, and Patrizio Campisi,

Abstract—In this paper we investigate the permanence issue of
electroencephalographic (EEG) signals, elicited by visual stimuli,
for biometric recognition purposes. Specifically, we evaluate the
discriminative capabilities of generic visually-evoked potentials
(VEPs) and of visual event-related potentials (ERPs) associated to
specific cognitive tasks. Furthermore, we analyze the permanence
issue of the considered EEG traits by verifying the stability
across time of the achievable recognition rates. Experimental
tests performed on a longitudinal database, comprising EEGdata
taken from 50 subjects during 3 different sessions, give evidence
of the presence of repeatable discriminative characteristics in the
individuals’ EEG activity 1.

I. I NTRODUCTION

In the very recent past, the use of electroencephalographic
(EEG) signals as biometric identifiers has attracted the interest
of the research community, thanks to the several advantages
they offer over conventional biometrics, like confidentiality
and security [1]. EEG signals can be captured in response to
a presented stimulus or while performing a given task. Most
of the studies carried out so far have focused on EEG signals
acquired in resting states conditions, mainly because of the
simplicity to implement the acquisition protocol. Nonetheless,
several other elicitation protocols, based on the responseto
audio or visual stimuli, real or imagined body movements,
imagined speech, etc., can be exploited for designing an EEG-
based biometric recognition systems as detailed in [2].

Specifically, in this paper we focus on the use of EEG
signals elicited by visual stimuli and analyze the feasibility
of their use for biometric recognition purposes. It is well
known in literature that presenting a generic flashing pattern
to an observer induces a spontaneous time-locked response
of the visual cortex, indicated as visually-evoked potential
(VEP) [3]. Moreover, a specific target, appearing at a low
occurency ratewrt to the other visual stimuli and designed
to invoke the execution of a cognitive task, is able to draw out
a specific event-related potential (ERPs) [4]. Both responses
are commonly elicited when a sequence of non-target stimuli
is infrequently interrupted by a target event [?]. In this paper
we design two distinct protocols to analyze the discriminative
capabilities of responses to both target and non-target events.

In addition, carrying on our previous study in [5], we
analyze the stability across time of EEG signals elicited
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with the proposed protocols. Since EEG patterns may vary
from session to session, due to several preconditions such as
position and conductivity of the electrodes, level of attention
and wakefulness, or task involvement of the subject [6], inves-
tigating the permanence issue is of paramount importance for
the deployment of EEG-based biometric recognition system in
practical scenarios. Experimental results obtained over alarge
database, comprising EEG acquisitions taken from 50 subjects
during 3 distinct sessions spanning a period of one month and
a half, support the hypothesis that individuals’ EEG signals
actually possess repeatable discriminative traits.

II. STATE OF THE ART: VEP BASED EEGBIOMETRICS

EEG signals elicited by visual stimuli have been already
employed as biometric identifiers in a few works. Nonetheless,
most of the already proposed approaches are flawed either in
terms of the dataset dimension, or the number of involved
EEG acquisition sessions, or due to the fact that EEG data
employed for enrollment and recognition purposes rarely taken
from disjoint sessions. A review on the state of the art follow.
Face and car images, each rapidly shown for40ms, have
been employed as visual stimuli in [7], where pre- and post-
stimulus responses are employed to discriminate between 20
considered individuals. A classification accuracy at about94%
has been achieved exploiting the best performing post-stimulus
set. VEP data have been recorded in [8] from 20 subjects
when presenting a single kind of stimulus, consisting of a
picture with common objects represented by black and white
line. A classification accuracy of 99.6% has been achieved
with ANOVA tests performed on each of the 61 employed
channels. The influence of irrelevant stimuli during a task
has been studied in [9] by means of a rapid serial visual
paradigm (RSVP). EEG data acquired with 8 channels from
8 subjects have been used to this aim, achieving an overall
correct recognition rate (CRR) of about 97%.

While the aforementioned approaches have been tested over
EEG data collected during a single session, exploited for
generating both enrollment and recognition datasets, EEG data
from 5 subjects have been recorded during 5 sessions on the
same day in [10]. The combined use of EEG responses to both
target and non-target visual stimuli has allowed to achieve
a CRR up to 97.6%. Unfortunately, such performance has
been reached by randomly assorting EEG data from different
sessions when generating enrollment and testing datasets,thus
affecting the reliability of the obtained results. An analogous
approach has been followed for creating enrollment and recog-
nition datasets in [11], where EEG differences between re-
sponses to self- and non-self- face images have been exploited
to discriminate 10 subjects, with a CRR of about 86.1%.
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TABLE I: Overview of state-of-the-art EEG based biometric systems based on the use of visual stimuli.

Paper Users Channels Protocol Type of Stimuli Features Classifier Performance Sessions

Das et al. [7] 20 20 VEP rapid visual categorization task LDA KNN CRR=94% 1

Palaniappan [8] 20 61 VEP snodgrass & vanderwart pictures spectral power ratio BP NN CRR=99.6% 1

Gupta et al. [9] 8 8 VEP/ERP rapid serial visual paradigm P300 LDA CRR=97% 1

Touyama [10] 5 1 (Cz) VEP/ERP target and non-target images PCA LDA CRR=97.6% 5 (same day)

Yeom et al. [11] 10 8 VEP/ERP self and non-self face images Adaptive discriminative featureNon-Linear SVM CRR=86.1% 2 (different days)

Armstrong et al. [12]
15

1 ERP text reading ERP signal Correlation
CRR=89.0% 2 (1 week)

8 CRR=93.0% 2 (over 6 months)

Fig. 1: Visual stimuli employed for the “Geometric” protocol.

Conversely, two disjoint recording sessions have been prop-
erly used as enrollment and testing datasets in [12]. Specifi-
cally, two scenarios have been there investigated: the firstone
with EEG data acquired from 15 subjects at a time distance of
one week, and the second one with only 8 subjects recorded
at an inter-session temporal distance of 6 months. The CRRs
achieved exploiting the generated ERPs have been respectively
of 89.0% and 93.0%. Nonetheless, it is worth remarking that,
besides being obtained over relatively small databases, the
results reported in [12] cannot provide proper information
about the permanence in EEG-based biometric recognition
systems, having been evaluated over two distinct databases.

Table I provides a summary of the aforementioned papers.
Given the limits of the contributions so far described, the
present work presents the first analysis on the permanence
of EEG signals generated using visual stimuli for the purpose
of biometric recognition.

III. E MPLOYED EEG DATA ACQUISITION PROTOCOL

Two distinct stimulation protocols are here employed to
elicit EEG potentials, both involving the presentation of rare
target images, among a large series of non-target stimuli.

A. “Geometric” protocol

This protocol consists in the display on an LCD monitor of 8
images each containing a different geometric shape, as shown
in Fig. 1. The appearance of each image represents a stimulus
lasting for 250ms and followed by a black screen lasting
450ms. Each geometric shape is presented in a random order
for 60 times, therefore resulting in a total acquisition time of
5min and36s for each session. While the appearance of each
image generates a VEP in the observer, a peculiar response
is elicited when the target shape is shown [?]. Specifically,
the considered subjects are requested to concentrate on the
occurrences of the “circle” shape, which is therefore used as
target stimulus, while the other 7 images are considered non-
target.
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Fig. 2: Electrodes montages. (a):M = 17; (b): M = 6.

B. “Letters & Numbers” protocol

The second protocol involves the presentation of a total
of 62 images, including 26 images showing capital letter
characters, 26 images with lowercase letter characters, and 10
images containing digits from 0 to 9. Out of these images,
subjects are requested to concentrate when numbers appear
on the screen, with both capital and lowercase letter acting
as non-target stimuli. Similarly to the geometric protocol, the
target images are randomly shown for a total of60 occurrence,
while letters are randomly presented for a total of660 times.
Since each image is shown for250ms, and a450ms of delay
is implemented between every two images, each recording
session therefore lasts8min and24s, during which a total of
720 stimuli are presented to a subject.

IV. EMPLOYED EEG BASED BIOMETRIC SYSTEM

Once acquired, EEG data are first preprocessed as outlined
in Section IV-A. The processing then performed during the
enrollment phase is described in Section IV-B, while the
verification phase is detailed in Section IV-C.

A. Preprocessing

At the beginning of both enrollment and verification phases,
a preprocessing step is carried out on the recorded EEG data,
to increase their signal-to-noise ratio. Specifically, a common
average referencing (CAR) filter is first applied by comput-
ing the mean signal from all theM considered acquisition
channels, and then subtracting this value from each of them,
thus reducing artifacts related to unsuitable reference choices.
[2]. The CAR-filtered channels are then normalized using z-
score transformation, thus generating zero-mean data withunit
variance. Eventually, each of theM signals is also detrended
by individually subtracting their best-fit line, thus allowing to
focus only on the data fluctuations about the estimated trend.

B. Template generation

In order to generate a template from the acquired EEG
signals, it is worth remarking that EEG potentials amplitudes
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tend to be significantly low, when compared to the overall
behavior of EEG fluctuations. In order to resolve such low-
amplitude potentials against the background of ongoing EEG,
signal averaging is performed on the available data for each
user. Specifically, being the responses to both target and
non-target stimuli time-locked to the originating events,it is
possible to collectR reactions to such stimuli, each lastingT
ms from the beginning of the associated event, and averaging
them thus having the undesired noise filtered out. For a
given user, the obtained template is therefore generated asthe
collection of theM time-dependent potentials registered from
each of theM considered EEG channel, in correspondence to
either target or non-target stimuli.

C. Verification

In the verification stage, the template is generated as
described in Section IV-B. The responses observed in cor-
responding channels during enrollment and verification are
then compared by evaluating their cosine distance. TheM

distances thus computed are fused into a single score by taking
their average. A comparison with a threshold completes the
verification procedure.

The aforementioned process is performed when working
on either target or non-target-stimuli. It can be however
observed that, for a fixed numberR of stimuli responses to
be collected in both scenarios, the time needed for performing
the enrollment or verification phases of a system exploiting
non-target occurrences are typically much lower than the cor-
responding amounts required when considering target events,
given the modalities through which the employed protocols
are designed.

V. RESULTS AND DISCUSSION

The EEG database employed for the performed experimen-
tal tests is collected using a Galileo BE Light amplifier with
19 electrodes, placed on the subjects’ scalp according to the
10-20 international system [13]. EEG signals are taken from
50 healthy subjects, whose age ranges from 20 to 35 years
with an average of 25, according to both protocols described
in Section III. During each EEG data acquisition, subjects are
comfortably seated on a chair in a dimly lit room, with a
viewing distance and screen sizes selected in order to satisfy
the preferred viewing distance (PVD) [14]. Three distinct
acquisition sessions, indicated in the following as S1, S2,and
S3, are performed for each subject. Specifically, the second
recording session of each user is taken one week after the
first one, while the temporal distance between the first and the
third sessions of the considered users ranges from 25 to 49
days, with an average of 34 days.

All the tests are carried out by selecting, as enrollment and
testing datasets, EEG data from distinct sessions. Moreover, in
order to present statistically significant results, each considered
scenario is evaluated by means of cross-validation procedures,
consisting of 20 distinct runs, each performed by randomly
selecting 40 users out of the available 50. Specifically, at each
run the performance associated with the responses to either

target or non-target stimuli is estimated by considering, for all
the 40 selected subjects and in both the considered protocols:

• 10 different templates, each generated as described in
Section IV-B on the basis ofR = 50 consecutive
responses captured during the enrollment session;

• for each enrollment template, 10 distinct probes for
intra-class comparisons, each time obtained by randomly
selectingR = 50 consecutive responses from the recog-
nition session;

• for each enrollment template, a testing probe for inter-
class comparison from each of 30 users distinct from the
enrolled one, each obtained by randomly selectingR =
50 consecutive responses from the recognition session.

At each iteration, the associated recognition performanceis
therefore evaluated on the basis of40 · 10 · 10 intra-class
matches, and40 · 10 · 30 inter-class comparisons.

Within the considered framework an analysis on the most
discriminative subbands and time intervals to consider is
given in Sections V-A and V-B respectively. Such analysis
is performed using S1 as enrollment datasets and S2 as
verification data (S1vs S2). Furthermore, we analyze the
permanence of the EEG signals elicited using the employed
visual stimuli by means of the achievable recognition per-
formance in Section V-C, where three different scenarios
with an increasing temporal distance between the enrollment
and the identification stages, namely S1vs S2, S2 vs S3,
and S1 vs S3, are considered. Results are given in next
Sections in terms of the 95% confidence intervals of the equal
error rates (EERs) for both the “Geometric” and the “Letters
& Numbers” protocol. Confidence intervals are reported as
[µEER − 1.96σEER : µEER + 1.96σEER], being µEER

and σEER respectively the mean and standard deviation of
the EER obtained during the 20 performed iterations of the
employed cross-validation procedure.

The aforementioned analysis are conducted considering two
different EEG montages, depicted in Figure 2, with either
M = 17 or M = 6 employed channels. In the former case,
only the two frontal electrodes, i.e.Fp1 andFp2, are discarded
due to the most relevant presence of EEG potentials in the
central and occipital regions. In order to reduce the number
of employed electrodes, thus lowering the user inconvenience,
we also consider the latter configuration, selected by sorting
each individual channel in terms of associated recognition
performance, and selecting the top six for both the target
and non-target scenario. It is worth observing that this latter
montage resembles those commonly employed to exploit ERP
for brain-computer applications [15].

A. Frequency subband selection
Three different subbands are evaluated for determining the

EEG frequency range containing the most discriminative char-
acteristics:[0.5 : 4]Hz, corresponding toδ waves,[0.5 : 8]Hz,
including bothδ and θ waves, and[0.5 : 14]Hz, comprising
δ, θ and α rhythms. The considered EEG potentials are
analyzed over a time interval following the presentation of
a stimulus and lastingT = 600ms, for both target and non-
target. Figures 3 and 4 show the EER 95% confidence intervals
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Fig. 3: “Geometric Protocol”: EER confidence intervals of
EER for different frequency bands.
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Fig. 4: “Letters & Numbers” protocol: EER confidence inter-
vals for different frequency bands.
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Fig. 5: “Geometric” protocol: EER confidence intervals for
different time intervals.
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Fig. 6: “Letters & Numbers” protocol: EER confidence inter-
vals for different time intervals.

when exploiting the considered subbands, respectively forthe
“Geometric” and the “Letters & Numbers” protocols. It can
be seen that, for both the considered protocols, the[0.5 : 8]Hz
and [0.5 : 14]Hz subbands perform similarly, with the former
one showing a slightly lower performance variance. Therefore,
we select the[0.5 : 8]Hz subband to perform the subsequent
analysis. The obtained results also show that focusing on non-
target responses generally guarantees higher recognitionrates
than the ones obtained when considering target events.

B. Time interval selection

The responses to both target and non-target responses
are then analyzed considering different time intervals

  Target                     Non-target

E
E

R
 (

%
)

0 

5 

10

15

20

25

30

35

40
S1 vs S2
S2 vs S3
S1 vs S3

(a) M = 17 Ch.

  Target                     Non-target

E
E

R
 (

%
)

0 

5 

10

15

20

25

30

35

40
S1 vs S2
S2 vs S3
S1 vs S3

(b) M = 6 Ch.

Fig. 7: “Geometric” protocol: EER confidence intervals com-
paring different sessions.
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Fig. 8: “Letters & Numbers” protocol: EER confidence inter-
vals comparing different sessions.

following the presentation of the stimuli, withT ∈
{300, 400, 500, 600, 700}ms. The shortest considered interval
is set to 300ms in order to include the P300 behavior,
characteristic of ERP responses, in all the evaluated scenarios.
Figures 5 and 6 show the 95% confidence intervals obtained
for both the considered protocols, showing that a proper se-
lection for the interval to be analyzed isT = 600ms, therefore
employed for the following EEG permanence evaluation.

C. Permanence of EEG signal across time

The permanence of the recognition performance achievable
with the considered EEG based biometric system, is then
evaluated by considering three different scenarios with in-
creasing temporal distance between the enrollment and the
verification stages. Figure 7 and 8 report the 95% confidence
intervals evaluated for the considered protocols, showingthat
for both of them a satisfactory performance permanence can
be achieved over different comparisons. Specifically, a more
stable behavior is observed when exploiting responses to non-
target events, with respect to the use of target stimuli. The
obtained results also show that a montage withM = 6
electrodes results in only a slight worsening of the achievable
performance with respect to the use ofM = 17 channels,
while significantly improving the usability of the proposed
system in terms of user comfort, and therefore preferrable for
practical implementations2.

VI. CONCLUSIONS

In this paper we have investigated the feasibility of using
EEG biometrics elicited with visual stimuli for automatic
people recognition. Specifically, we have verified, on a longi-
tudinal dataset, that a satisfactory level of permanence across

2Cite this paper as ”R. Das, E. Maiorana and P. Campisi, ”EEG
Biometrics Using Visual Stimuli: A Longitudinal Study,” inIEEE Sig-
nal Processing Letters, vol. 23, no. 3, pp. 341-345, March 2016. doi:
10.1109/LSP.2016.2516043”
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time of the so-obtained EEG signals, measured in terms of
stable recognition performance, can be obtained. According to
the obtained results, EEG channel montage with 6 electrodes,
and the analysis of responses to non-target stimuli, can be
recommended for practical implementations. The performed
analysis can be considered as a preliminary step towards the
use of VEP-based EEG signals as a stable biometric identifier
3.
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