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Longitudinal Evaluation of
EEG-based Biometric Recognition

Emanuele Maiorana, Senior Member, IEEE, Patrizio Campisi, Senior Member, IEEE

Abstract—Brain signals have recently attracted the attention
of the scientific community as potential biometric identifiers.
In more detail, there is a growing interest in evaluating the
feasibility of using electroencephalography (EEG) recordings to
perform automatic people recognition. In this framework, the
study of the longitudinal behavior of EEG signals, that is, their
permanence across time, is of paramount importance. This paper
is the first extensive attempt, in terms of employed elicitation
protocols, number of involved subjects, number of acquisition
sessions, and covered time span, to evaluate the influence of aging
effects on the discriminative capabilities of EEG signals over
long-term periods. Specifically, we here report and discuss the
results obtained from experimental tests conducted on a database
comprising 45 subjects, whose EEG signals have been collected
during 5 to 6 distinct sessions spanning a total period of 3 years,
using 4 different elicitation protocols. The longitudinal behavior
of EEG discriminative traits is evaluated by means of a statistical-
and performance-related analysis, using different EEG features
and hidden Markov models as classifiers. A characterization
of each considered EEG channel in terms of uniqueness and
permanence properties is also performed, with the purpose of
ranking their relevance for biometric purposes, thus giving hints
to contain their number in practical applications. Moreover, we
design some possible countermeasures to mitigate aging effects
on recognition performance and evaluate their effectiveness, thus
paving the road for the future deployment of real-life cognitive
recognition systems relying on brain-based biometric traits.

EDICS: BIO-MODA-OTH
Index Terms—Biometrics, Electroencephalography, Perma-

nence, Aging Effects, Longitudinal Data Analysis.

I. INTRODUCTION

Brain sensing has interested researchers since the beginning
of the twentieth century, when the first devices able to detect
brain activities have been designed. To this end, different
methodologies, based on either the measurement of blood flow,
using approaches such as functional magnetic resonance imag-
ing (fMRI), near-infrared spectroscopy (NIRS), and positron
emission tomography (PET), or the detection of neuronal
electrical activity, like in magnetoencephalography (MEG) and
electroencephalography (EEG), are nowadays available. These
techniques have allowed getting significant insights for the
diagnosis and treatment of brain disorders such as epilepsy,
schizophrenia, Alzheimer’s and Parkinson’s diseases, to cite a
few [1], and for the development of brain-computer interfaces
(BCIs) with rehabilitative or entertainment applications [2].
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Only recently, it has been postulated that cerebral activity
can discriminate between human subjects, thus allowing its use
as biometric identifier in automatic recognition systems [3].
Within this framework, most of the investigation carried out
so far has focused on EEG analysis, because of the relatively
inexpensiveness of the associated acquisition devices and their
ease of use [4].

Brain signals have several peculiarities making them ad-
vantageous for biometric purposes. In fact, in addition to the
obvious universality and intrinsic liveness properties, they are
also highly robust against presentation attacks, being their
acquisition at a distance impossible at the present stage of
technology. On the other hand, being the research on EEG
biometric modality in its infancy, several other issues still
have to be properly addressed before deployment in practical
applications will be possible. Among them, a comprehensive
analysis of a key property such as performance across time,
namely stability or permanence, is still missing in literature.

In this contribution we intend to tackle the permanence issue
in EEG signals, presenting the results of a longitudinal analysis
conducted on a dataset comprising recordings collected from
45 healthy subjects during 5 to 6 sessions spanning a 3-year
time period. A preliminary investigation on EEG longitudinal
behavior has been presented in [5], where a limited time span
of 1 month between acquisitions has been considered. In this
work we extend [5] both in terms of the employed elicitation
protocols, the time span of the dataset, the EEG features em-
ployed, and the comparison procedure. Specifically, in addition
to the use of a dataset spanning a large 36-month period, we
here analyze EEG responses to 4 different elicitation protocols,
including brain conditions in resting states with either closed-
or open-eye conditions, the only ones analyzed in [5], as well
as in active states while performing cognitive tasks involving
mathematical computation and speech imagery. Three different
EEG representations, expressing the acquired signals through
time-, frequency-, and time-frequency-dependent parameters,
are exploited as templates for the considered biometric trait.
Hidden Markov models (HMMs) are here applied for the
first time to EEG signals for biometric purposes, in order
to generate the comparison scores. An evaluation of both the
uniqueness and the permanence properties of the EEG signals
versus the electrodes placement on the scalp is also provided
here. Eventually, countermeasures to be adopted in practical
biometric systems to deal with the EEG aging effects are also
proposed.

The paper is organized as follows. A review of the most
relevant longitudinal studies performed on different biometric
modalities is given in Section II. Section III describes the state
of the art on multi-session EEG-based biometric recognition.
Section IV details the characteristics of the dataset exploited
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in the performed experimental tests. The employed biometric
system is described in Section V. The results of the per-
formed longitudinal evaluation are then outlined in Section
VI. Specifically, in Section VI-A we present an analysis on the
statistical behavior of genuine scores over time, and in Section
VI-B we discuss the variability over time of the obtained
recognition performance. Possible approaches to mitigate the
effects of aging on EEG-based biometric recognition systems
are proposed in Section VII. Conclusions are eventually drawn
in Section VIII.

II. LONGITUDINAL STUDIES ON BIOMETRIC TRAITS

Performing a proper analysis on the permanence of any
biometric trait is a challenging task. While several studies
evaluating the effects of aging on the achievable recognition
accuracy have been presented in literature, most of them
have focused on cross-sectional evaluations, comparing perfor-
mance attainable for groups of individuals having differences
in age [6]. Proper longitudinal studies would instead require
the availability of data captured from the same subjects at mul-
tiple instances, over periods in the order of years, according
to modalities minimizing the influence of non-aging-related
factors, such as using the same equipment during the whole
acquisition campaign [7].

The scientific community has started investigating the per-
manence issue in biometric recognition systems only very
recently, mainly focusing on fingerprint, face, and iris. In [8] a
detailed analysis of fingerprint characteristics has been carried
out on a longitudinal database collected by the Michigan State
Police, comprising data from 15.597 subjects with at least
5 acquisitions over a minimum 5-year time span, exploited
to analyze genuine and impostor scores obtained through
commercial off-the-shelf (COTS) fingerprint comparators. Al-
though a significant decrease in genuine comparison score,
together with a negligible variability in impostor score, has
been noticed, the achievable recognition accuracy remains
quite stable even though the time interval between a fingerprint
pair being compared increases. A similar analysis on face
recognition has been presented in [9] using mugshots from two
different law enforcement agencies, comprising data collected
from 5.633 and 18.007 subjects over at least a 5-year time
span. A decreasing trend for genuine scores generated by
COTS devices has been noticed, with achievable recognition
rates starting to be affected when considering query images
acquired 5 years after the enrolment. Temporal stability in
iris recognition has been the object of a detailed NIST anal-
ysis [10] conducted on 7.876 subjects, whose iris has been
acquired on 40 or more occasions over a minimum 4-year
time span. Although no evidence of widespread iris aging
effects have been there reported, other studies have challenged
such result [11], as [12] where recognition rates evaluated
over data captured from 322 subjects in a 3-year period have
shown a performance worsening with increasing time between
enrolment and probe images.

Longitudinal studies have been also performed on signature,
speech, gait, keystroke, hand geometry and even electrocar-
diogram (ECG) biometric modalities. Datasets acquired in
laboratory conditions have been used for these evaluations,

therefore involving a limited number of subjects and a limited
time span with respect to the analysis conducted in [8], [9], and
[10], where the employed biometric data have been collected
by government or law enforcement agencies. In more detail,
data from 29 subjects enrolled in both BIOSECURE [13] and
BiosecurID [14] datasets, covering an overall period of 15
months, have been analyzed in [15] to address aging effects on
on-line signatures. The Trinity College Dublin speaker ageing
(TCDSA) database, containing speech recordings from 18
public figures spanning ranges from 30 to 60 years, has been
employed in [16] to highlight that speech-based recognition
systems may become unreliable when comparing samples
distant more than 5 years. Aging effects in gait recognition
have been discussed in [17], where the gait of 10 subjects
has been observed during 12 months. A longitudinal study on
keystroke, conducted upon data collected from 8 subjects at
a 2-year time lapse, has been presented in [18]. A significant
performance drop has been noticed in [19] when comparing, in
a geometry-based recognition system, left hands captured from
74 subjects during two sessions separated in time by 6 months,
with respect to comparing data from the same session. Signals
from 47 subjects, recorded during 6 months in sitting posture,
have been used in [20] to evaluate performance variability of
ECG-based recognition systems.

The aforementioned studies highlight that aging effects on
the comparison scores of the same individual can be found in
any biometric trait, with the sole exception of DNA [21].

III. EEG-BASED BIOMETRIC RECOGNITION

EEG signals are the result of the electrical field generated
by the synchronous firing of specific spatially-aligned neurons
of the cortex, namely, pyramidal neurons. Such activity can be
measured by sensing the electric potential difference between
specific positions on the scalp surface. Wet electrodes currently
represent the gold standard to sense brain activity with the
lowest possible noise level, yet their use implies the adoption
of electrolyte gel on the scalp, resulting in subject inconve-
nience and non-negligible time to setup the recording process.
Although alternative solutions based on dry electrodes exist,
they still need to be improved in order to achieve the desired
performance level, in terms of both signal-to-noise ratio (SNR)
and user comfort [22].

Most of the studies on EEG for biometric purposes have
focused on single session datasets [23], often claiming the
ability to reach perfect recognition performance with no error
[24]. However, the reliability of such evaluations may be
questionable, since it is hard to state whether the achieved
recognition rates are only dependent on the discriminative
brain characteristics of each subject, or if session-specific
exogenous conditions, such as the capacitative coupling of
electrodes and cables with other devices, induction loops
created between the employed equipment and the body, power
supply artifacts, and so on, may significantly differ among
distinct acquisition sessions, thus affecting both the inter- and
the intra-class variability of EEG recordings.

The collection of datasets to perform longitudinal studies
is a very challenging task since it requires the availability
of the same population involved in multiple data acquisition
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TABLE I
STATE-OF-THE-ART LONGITUDINAL STUDIES EVALUATING EEG SIGNALS AS BIOMETRIC IDENTIFIERS.

Paper Database System
Sessions Covered Period Users Channels Protocol Performance Features Classifier

Marcel et al. [25] 3 3 days 9 8 MI HTER = 19.3%÷42.6% PSD GMM
Näpflin et al. [26] 2 15 months (median) 20 60 EC IR = 88.0% PSD Linear regression

Brigham et al. [27] 4 n.a. 6 128 Imagined speech IR = 78.6%÷99.8% AR (2nd order) SVM
Kostı́lek et al. [28] 2 1 year 9 53 EC IR = 87.1% FZ-AR (7th order) Mahalanobis dist.

La Rocca et al. [29] 2 1÷3 weeks 9 5 EC IR = 100.0%
AR (10th order) Linear classifier3 EO IR = 90.5%

Armstrong et al. [30] 2 1 week 15 1 ERP IR = 89.0% ERP signal Correlation6 months 8 1 ERP IR = 93.0%
Wang et al. [31] 2 1 week 4 128 EC IR = 92.58% CWT L2 dist.
Das et al. [32] 3 1 month 50 19 VEP EER u 13.0% Evoked potential Cosine dist.

Maiorana et al. [33] 2 1 month 30 19 EC IR = 87.9% EigenBrains L1, L2, cosine dist.EO IR = 75.4%
Ruiz-Blondet et al. [34] 2 9 months (mean) 20 26 ERP IR = 100.0% ERP signal Correlation

Maiorana et al. [5] 3 1 month 50 19 EC IR = 90.8% AR, PSD, COH L1, L2, cosine dist.EO IR = 85.6%

sessions. This task is even more challenging than usual when
considering EEG signals, due to the possible users’ displeasure
in the acquisition process. Only few works, summarized in
Table I, have therefore studied EEG-based biometric recogni-
tion using multi-session datasets. Specifically, data collected
from 9 subjects performing motor imagery (MI) tasks during
3 consecutive days, with 4 sessions each day, have been used
in [25]. A half-total error rate (HTER) of 19.3%, using power
spectral density (PSD) as EEG features and Gaussian mix-
ture models (GMM) for incremental learning across multiple
sessions, has been there achieved. Signals from 20 people,
recorded during 2 sessions at a median distance of 15 months,
and represented through PSD characteristics, have been used in
[26] to estimate a rank-1 identification rate (IR) at about 88%.
A biometric system based on an imagination task performed
by 6 subjects, whose EEG signals have been recorded in 4
different days, has been analyzed in [27], where IRs ranging
from 78.6% to 99.8% have been reported. Details on the time
distances between two acquisitions are not given, being there-
fore impossible to derive proper information on the stability
of the obtained performance. A database collected from 9
subjects during 2 one-year-apart sessions has been considered
in [28], applying a frequency-zooming auto-regressive (FZ-
AR) modeling to 53 channels to achieve IR = 87.1%. Signals
from 9 subjects have been recorded during 2 sessions spanning
up to 3 weeks in [29], and exploited to achieve perfect IR
for EEG data acquired in eyes-closed (EC) conditions, and
IR = 90.53% for the eyes-open (EO) scenario. Event-related
potentials (ERPs), obtained as responses to visual stimuli,
have been exploited in [30] to achieve IRs at 89.0% and
93.0%, respectively for a database collected from 15 people
during 2 sessions spanning 1 week, and a dataset comprising
signals from 8 persons acquired during 2 six-month-separated
sessions. Since these results have been evaluated over two
distinct databases, it is impossible to argue on performance
permanence for varying time distances between enrolment and
test data. Signals recorded from 4 subjects in EC conditions
during 2 one-week-apart sessions have been processed through
continuous wavelet transform (CWT) in [31] guaranteeing IR
= 92.58%. Visual-evoked potentials (VEPs) to both target and
non-target stimuli have been evaluated in [32] to provide equal
error rates (EERs) respectively at about 18% and 13%, over

a database comprising signals acquired from 50 users during
3 sessions taken during a period of 1 month. Parsimonious
representations in the frequency domain have been proposed in
[33], where IR = 87.9% and IR = 75.4% have been respectively
achieved in EC and EO conditions, using EEG signals taken
from 30 subjects during 2 recording sessions spanning one
month. Perfect accuracy has been achieved in [34] applying
the system proposed in [23] to 20 subjects whose EEG signals
have been recorded during 2 sessions at an average distance
of 9 months. The most detailed analysis on permanence so
far performed for EEG-based biometric recognition systems
has been presented in [5], where the performance behavior
achievable when comparing data captured from 50 subjects
during 3 different sessions spanning a 1-month period, and
represented through auto-regressive (AR), PSD and spectral
coherence (COH) features, has been discussed. IR at 90.8%
comparing signals captured in EC conditions, and IR = 85.6%
for the EO scenario, have been reported almost regardless of
the sessions being compared out of the 3 available ones.

Despite their higher reliability with respect to single-session
studies, it is worth observing that all the mentioned evaluations
have considered either short time distances between the avail-
able EEG acquisitions, in the order of days or months, or a
small population, or both. Therefore it is hard to speculate on
EEG permanence on the basis of the aforementioned works.
Within this framework, this paper represents a significant
improvement with respect to the state of the art on longi-
tudinal analysis of EEG biometric trait, since the analysis
here reported is the most extensive one in the literature of
EEG-based biometric recognition systems, involving multiple
acquisition sessions, spanning a wide time frame, employing
a large number of subjects, using several elicitation protocols,
and considering different EEG representations.

IV. LONGITUDINAL EEG DATABASE

In this paper we carry out the permanence analysis of
EEG discriminative capabilities on a longitudinal database
collected using a 19-channel GALILEO BE Light amplifier,
recording EEG signals at an original sampling rate of 256 Hz.
Specifically, the dataset comprises 5 different sessions where
45 healthy subjects have donated their EEG signals elicited
using 4 different protocols. Out of these 45 subjects, 30 have
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Fig. 1. The 10-20 International system seen from left (A) and above
the head (B). The letters F, T, C, P, and O stand for frontal, temporal,
central, parietal, and occipital lobes. (Jaakko Malmivuo and Robert Plonsey,
Bioelectromagnetism, Oxford University Press, 1995, WEB version).

donated their EEG traits also during a sixth acquisition session.
The subjects’ age at the time of the first acquisition ranges
from 21 to 34 years, with an average of 25 years. During
each recording session, subjects have been comfortably seated
on a chair in a dimly lit room, with the electrodes placed
on their scalp according to the de-facto standard 10 − 20
montage depicted in Figure 1. Conductive gel has been used
to reduce the scalp impedance under 10 kΩ. Neither dietary
nor activity restrictions have been suggested to the subjects,
neither between consecutive EEG acquisitions nor during the
days of the recordings. This lack of restrictions goes in the
direction of using acquisition conditions close to real life.

A. Dataset time span

Six distinct recording sessions, indicated in the following
as S1, S2, . . . , S6, have been carried out to collect the multi-
session database we exploit in our analysis. Specifically, the
average distances between the first and the other five acqui-
sition sessions are: ∆̄S1,S2

= 1 week, ∆̄S1,S3
= 1 month,

∆̄S1,S4
= 7 months, ∆̄S1,S5

= 16 months, ∆̄S1,S6
= 36

months. More in detail, Figure 2 shows the distributions of
the time distances ∆S1,Sn , n = 2, . . . , 6, elapsed between the
first and the n-th EEG recording for each considered subject.
The performed activities have covered an overall period of
more than 3 years.

B. Elicitation protocols

The following elicitation protocols have been adopted dur-
ing each subject’s acquisition session:

• resting state with eyes closed (EC): EEG signals have
been collected for 4 minutes in EC conditions. Resting
state with EC is one of the most commonly used acqui-
sition modality, widely investigated for both medical and
biometric applications;

• resting state with eyes open (EO): EEG signals have
been acquired for 4 minutes in EO conditions, with
subjects asked to fix a light point on the screen;

• mathematical computation (MC): a cognitive protocol
consisting in asking the subject to perform sums and
differences of integers has been considered. During each
performed session, 28 operations are shown on the screen,
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Fig. 2. Acquisitions’ sessions temporal distribution histograms.

each for 5s interleaved by 2s from the previous one, for
a total duration of 3min and 14s;

• speech imagery (SI): subjects have been asked to men-
tally reproduce the sound of a vowel observed on the
screen. Each of the 5 vowels is shown 20 times in random
order for 3s, with a 2s separation time between any
presentation, for an overall period of 8min and 18s.

It is worth remarking that, as also evident from Table I, the
collected database is the largest EEG multi-session dataset
ever employed in literature, both in terms of enrolled subjects,
employed elicitation protocols, and time span employed to test
the feasibility of EEG signals as biometric identifiers.

V. EEG-BASED BIOMETRIC RECOGNITION SYSTEM

The proposed biometric recognition system employed to
evaluate the permanence of EEG discriminative characteristics
across long-time periods is depicted in Figure 3. Specifically,
the acquired EEG signals are first preprocessed as described in
Section V-A. The epochs obtained by segmenting the original
signals are then processed through HMMs as outlined in
Section V-B, modeling each channel of a given epoch as a
sequence of hidden states generating observations given by
the features described in Section V-C. The adopted verification
strategy is then detailed in Section V-D.

A. Preprocessing

A spatial common average referencing (CAR) filter [35]
is first applied to the acquired data in order to improve their
signal-to-noise ratio (SNR), by subtracting from each raw EEG
signal r(c), with c = 1, . . . , C being C the number of consid-
ered channels, the mean voltage sensed over the entire scalp.
The obtained signals are then band-pass filtered to extract the
EEG subband of interest. Specifically, in the following we
always refer to signals within the α− β = [8, 30]Hz subband.
In fact, we have verified in our experimental tests that the
information there contained always guarantees the best achiev-
able recognition performance for all the evaluated acquisition
protocols. Given the considered subband, the filtered data
are then downsampled at 64Hz to reduce the computational
complexity of the subsequent processing, without negatively
affecting the accuracy achievable through the employed EEG
representations, described in Section V-C. The signals g(c) are
so obtained as output of the preprocessing step.

A segmentation process is then carried out, generating
for each acquisition the consecutive epochs g

(c)
i , with i =
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Fig. 3. Framework of the considered EEG-based biometric recognition system.

1, . . . , E during enrolment and i = 1, . . . , V during verifica-
tion. Epoch segmentation is performed differently depending
on the considered acquisition protocol. Specifically:

• EC: the available data are divided into overlapping epochs
lasting 5s, with a 40% overlap factor between consecutive
epochs;

• EO: as for EC, data are divided into overlapping epochs
lasting 5s with a 40% overlap factor. It is worth specifying
that the epoch length and the overlap factor employed
for segmenting EC and EO EEG recordings have been
selected experimentally in order to generate, from the
acquired signals, a number of epochs guaranteeing low
recognition rates, while also keeping the required com-
putational cost and processing time at acceptable levels;

• MC: an epoch is selected correspondingly to the EEG
signals recorded when a required operation is shown,
relying on a synchronization signal between the shown
operation and the acquired EEG data;

• SI: an epoch is selected as the period a vowel is shown on
the screen, relying on a synchronization signal between
the display inputs and the acquired EEG data.

B. HMM modeling of EEG signals

A novel approach based on HMMs is here employed to
model EEG signals for biometric recognition purposes. It is
worth remarking that, although HMMs are here exploited for
the first time in an EEG-based biometric recognition system,
they have been already applied to EEG signals for medical
applications [36] or for the design of BCI systems [37]. In fact,
they can properly model the brain’s non-stationary and non-
localized sources of information [38], [39], and represent the
dynamic behavior of the spatio-temporal EEG patterns with
the associated changes of brain states over time [40].

Similarly to what commonly performed on speech recogni-
tion [41], each EEG signal g(c)

i , associated to the c-th channel
of the i-th obtained epoch, c = 1, . . . , C and i = 1, . . . , E,
is first split into H overlapping frames, and thus represented
as a sequence o

(c)
i [h] of H observations, h = 1, . . . ,H . Each

observation consists of a set of Q parametric features extracted
from the corresponding frame, as detailed in Section V-C.
Frames lasting 1s, with a 50% overlap between consecutive
frames, are employed for each considered protocol, in order to
generate observation sequences with reasonable lengths, while
allowing the extracted features having the required resolution
and accuracy.

It is then assumed that each sequence of observations
o

(c)
i can be modeled as generated by a process that, at a

given h-th frame, is in one of the N admissible hidden
states, generates a measurable observation characterized by
a specific distribution, and then moves to another admissible
state at the next frame. This process can be learnt through an
iterative procedure [42] as a statistical left-right HMM model
λ(c) = {A(c), B(c), π(c)}, on the basis of the E observation
sequences considered for enrolment purposes, being:

• A(c) the state transition matrix, describing the probabil-
ities of moving from one of the N considered hidden
states to another, for consecutive frames;

• B(c) the observation probability distributions in the N
states, each modeled as a mixtures of M multivariate
Gaussian distributions;

• π(c) the initial state distributions for the N states.
As outlined in Section V-D, the models λ(c) are employed,

for each c-th channel, to estimate the similarity scores between
the enrolment data and each probe sequence õ

(c)
i associated

to the i-th epoch of a verification EEG sample.

C. Feature extraction

In both enrolment and verification, each EEG signal cor-
responding to the c-th channel of the h-th frame, extracted
from the i-th epoch taken from the acquired recording, is
individually processed in order to derive a feature-based
representation o

(c)
i [h], employed as h-th observation of the

i-th sequence modeled through HMMs for channel c. In order
to provide a comprehensive analysis of EEG signals, three
different kinds of parametric features are here exploited: AR
reflection coefficients, mel-frequency cepstrum coefficients
(MFCCs), and bump representation characterize EEG signals
in the time domain, the frequency domain, and the time-
frequency domain, respectively.

1) AR modeling: AR modeling is among the most com-
monly employed approaches for EEG signals analysis and it
has been often adopted for biometric recognition purposes [4].
In this work, we use as features the AR reflection coefficients,
which are expressed in terms of the AR filter parameters and
of the variance of the white noise feeding the filter estimated
by means of the Yule-Walker equations. As in [5], we estimate
the reflection coefficients of an AR model of order Q = 12
by using the Burg method [43].

2) MFCC modeling: MFCC modeling has been widely
used in speech recognition, while it has been only recently
exploited for biometric analysis of brain data [44]. In our
implementation, a filter-bank made of 18 mel-scaled triangular
band-pass filters is first applied to the EEG spectrum. The nat-
ural logarithm of the resulting cepstral bins is then evaluated
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to perform an homomorphic filtering operation, separating the
underlying neural activation signals from the effects of their
propagation through the skull [45]. A discrete cosine transform
(DCT) is eventually performed on the resulting values. The
desired MFCC representation is obtained by selecting the first
Q = 12 DCT coefficients, with the exclusion of the DC
component.

3) Bump modeling: Bump modeling has been first pro-
posed to process invasive EEG potentials [46], and later to
investigate brain oscillatory dynamics in the medical field,
especially regarding EEG data from patients with early stage
of epilepsy and Alzheimer’s disease [47]. It has been ap-
plied for biometric purposes in [48] to model EEG signals
acquired in EC and EO resting states, although only single-
session data are considered there. Bump modeling is obtained
through discrete wavelet transform (DWT) decomposition,
using complex Morlet wavelets of Gaussian shape in time
to accurately represent EEG oscillations in both time and
frequency domains. A sparse representation is then derived
from the DWT domain by extracting the most prominent bursts
within a normalized time-frequency map, and modeling them
into a sum of parametric functions, indicated as bumps. The
Q = 13 parameters suggested in [48] to characterize the
observed EEG behavior are here employed to represent the
considered signals.

D. EEG signals comparison

The comparison between two EEG acquisitions is per-
formed by first evaluating, for each considered channel c, the
similarity between individual verification epochs and the en-
rolment signal, represented through the HMM λ(c). Being õ

(c)
i

the sequence of observations associated with the i-th epoch of
the verification probe, a similarity score b(c)i is computed as
the a posteriori log likelihood b

(c)
i = logP (õ

(c)
i |λ(c)), once

the path of HMM hidden states which the observed sequence
has followed with maximum probability has been estimated
through the Viterbi algorithm [41].

For each i-th verification epoch, the scores obtained from
each channel are compared against a threshold ΦC , obtaining:

d
(c)
i =

{
1 if b(c)i ≥ ΦC

0 otherwise.
(1)

A fusion strategy is then implemented to combine the infor-
mation derived from the C available channels as:

zi =

1 if
1

C

C∑
c=1

d
(c)
i ≥ ΦV

0 otherwise.

(2)

Eventually, the decision regarding the identity of the presented
user is taken fusing the information extracted from the avail-
able epochs, as:

x =

1 (user verified) if
1

V

V∑
i=1

zi ≥ ΦR

0 (user not verified) otherwise.

(3)

It is worth pointing out that the b(c)i scores computed for
each c-th channel and i-th verification epoch could be fused

also according to a score-level strategy, instead of following a
decision-level approach as in the aforementioned description.
Nevertheless, experimental tests conducted on the employed
database show that the approach here proposed provides better
recognition rates rather than score-level fusion strategies.

VI. LONGITUDINAL ANALYSIS OF EEG BIOMETRIC TRAIT

The longitudinal analysis performed on the multi-session
EEG database described in Section IV is outlined in the
following. With regard to the collected dataset, it is worth
pointing out that the distributions of the distances ∆S1,Sn ,
n = 2, . . . , 6, shown in Figure 2, are characterized by
non-negligible variance and overlap, especially for sessions
beyond the fourth one. Since this issue could potentially affect
the reliability of the performed tests, the available data are
rearranged as detailed hereafter. Specifically, we refer in the
following to comparisons of EEG recordings taken at distances
∆1, . . . ,∆5, where such time intervals are characterized by
well-separated distributions, each with relatively small stan-
dard deviation, obtained as:

• time distances ∆1: comparisons of EEG data collected
at enrolment and verification stages having temporal
distances within the range ∆1 = [23; 43] days. Consid-
ering the available EEG database and comparing data in
sessions S1 and S3 (S1 vs S3), as well as samples in
sessions S2 and S3 (S2 vs S3), the instances falling into
the desired time interval are 67, with data taken from
45 subjects and characterized by an overall average time
distance between acquisition sessions of ∆̄1 = 1 month;

• time distances ∆2: lapses between enrolment and veri-
fication within the range ∆2 = [150; 271] days. Given
the available EEG database, and comparing S1 vs S4, S2

vs S4, S3 vs S4 and S4 vs S5, the instances falling into
the desired time interval are 148 with data taken from 45
subjects, with an overall average time distance between
recording sessions of ∆̄2 = 7 months;

• time distances ∆3: lapses between enrolment and verifi-
cation within the range ∆3 = [400; 552] days. Comparing
S1 vs S5, S2 vs S5 and S3 vs S5, the instances falling into
the desired time interval are 58 with data taken from 45
subjects, with an overall average time distance between
recording sessions of ∆̄3 = 16 months;

• time distances ∆4: lapses between enrolment and verifi-
cation within the range ∆4 = [631; 861] days. Comparing
S4 vs S6 and S5 vs S6, the instances falling into the
desired time interval are 30, one for each of the 30
available subjects, with an overall average time distance
between recording sessions of ∆̄4 = 26 months;

• time distances ∆5: lapses between enrolment and veri-
fication within the range ∆5 = [982; 1300] days. Com-
paring S1 vs S6, S2 vs S6 and S3 vs S6, the instances
falling into the desired time interval are 70 with data
taken from 30 subjects, with an overall average time
distance between recording sessions of ∆̄5 = 36 months.

Figure 4 shows the distributions of the time distances
∆1, . . . ,∆5. The performed longitudinal analysis thus eval-
uates the aging effects on EEG signals over a period going
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Fig. 4. Considered comparisons’ temporal distribution histograms.

from 1 month to 3 years. Time intervals below 1 month are
not here covered, having been already analyzed in our previous
work [5].

In the following, we present two longitudinal analyses.
First, in Section VI-A, a statistical evaluation regarding the
genuine score distributions obtained comparing EEG signals
captured at different times is given. Then, in Section VI-B,
a detailed analysis on the verification performance achievable
exploiting EEG signals as biometric identifiers is provided.
It is worth specifying that a 10-run cross-validation is per-
formed to estimate the score distributions and recognition
rates. Specifically, at each iteration, EEG signals lasting 3min
overall are randomly selected from enrolment data to generate
the employed templates. For each enrolment selection, 10
different verification probes lasting 45s are then taken from
the verification session to evaluate the desired scores and
performance metrics, for all the considered protocols.

A. Statistical analysis

In this section we investigate the behavior of the distance
separating the genuine and the impostor score distributions
evaluated in the proposed system, as well as the mutual
divergence among the obtained genuine score distributions,
for increasing time lapses between enrolment and verification.
EEG signals from the 30 subjects whose characteristics have
been acquired during all the 6 scheduled sessions are here em-
ployed. An HMM with N = 4 hidden states, each with M = 4
Gaussian distributions modeling the available observations, is
employed for the following analysis.

Let us indicate with ψ∆t
(b(c)) the distribution of genuine

scores generated when comparing the c-th channel of an
EEG epoch collected at time distance ∆t from the corre-
sponding enrolment set, with t = 1, . . . , 5. Let φ(b(c)) be
the overall impostor score distribution obtained comparing
the c-th channel of an EEG epoch with the enrolment set
of a different user, selected at any time distance from the
test probe. A single impostor score distribution, regardless
of the time distance between enrolment and test data, is
considered in the performed tests, thus obtaining a highly-
robust estimation through the exploitation of a large number
of similarity scores. The ideal behavior of the aforementioned
distributions would consist in a constant and wide distance
between the genuine score distributions, generated comparing
EEG data with different time lapses between two acquisitions

of the same user and the impostor one. Limited variations
in the obtained genuine score distributions would be also
desired. The performed longitudinal statistical analysis takes
into account these two aspects, evaluating:

• the Bhattacharyya distances DBh(ψ∆t(b
(c)), φ(b(c))) be-

tween the genuine score distributions computed with
enrolment and verification at time distances ∆t, t =
1, . . . , 5, and the impostor score distribution, for each c-th
channel. Besides allowing to detect the presence of aging
effects, this measure also provides information about
discriminative capabilities of EEG signals: the higher
the measured values, the better such characteristics are.
Results obtained for each considered channel using AR
features for EEG representation are reported in Figure 5;

• the Kullback-Leibler divergences
DKL(ψ∆1(b(c)), ψ∆t(b

(c))) between the score
probability distribution evaluated at the minimum
considered time distance ∆1, and the one evaluated
at time lapses ∆t, t = 2, . . . , 5, between enrolment
and verification. Large values of this measure imply
significant variability of the observed characteristics.
With respect to the aforementioned Bhattacharyya
distance, such measure provides further details on the
variability of the genuine score distributions over time,
even in case of a constant distance from the impostor
score distribution. Figure 6 shows the results obtained
when modeling each EEG channel with AR features.

Although the extents of aging effects are different for the
four considered protocols, a consistent trend of decreasing
DBh values and increasing DKL values, for all the employed
channels, can be seen when increasing the time distance be-
tween enrolment and verification. A non-significant variability
in DBh is often observed for time distances beyond ∆3.
This implies that recognition performance should not notably
vary, when there are more than 16 months between two EEG
acquisitions. On the contrary, the DKL divergences, evaluated
for the largest time intervals, indicate that the distributions of
genuine scores not cease to deviate from the one evaluated
at ∆1, highlighting a certain variability also over long time
periods. The tests conducted using MFCC and bump EEG
representations lead to analogous observations.

The longitudinal analysis on the genuine score distributions
is also exploited to assess the discriminative capabilities of the
employed EEG channels. Specifically, for each considered ac-
quisition protocol, the Bhattacharyya distances and Kullback-
Leibler divergences are used to evaluate the cumulative values

Θ
(c)
Bh =

5∑
t=1

DBh

(
ψ∆t

(b(c)), φ(b(c))
)
,

Θ
(c)
KL =

5∑
t=2

DKL

(
ψ∆1

(b(c)), ψ∆t
(b(c))

)
,

(4)

providing respectively, for each c-th channel, measures re-
garding its discrimination capability and stability over time.
Figures 7 and 8 depict the obtained results in terms of
topographic maps for EEG representations expressed through
AR features. From these plots it can be observed that the EC
protocol provides the best results in terms of discriminative
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Fig. 5. Statistical analysis performed on EEG signals modeled with AR features using Bhattacharyya distances. (a): EC; (b): EO; (c): MC; (d): SI.
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Fig. 6. Statistical analysis performed on EEG signals modeled with AR features using Kullback-Leibler divergences. (a): EC; (b): EO; (c): MC; (d): SI.

capability and that the parieto-occipital region is the most
relevant head area for all the considered protocols.

Eventually, in order to derive for each channel c a single
measure taking into account all the aforementioned aspects,
we first evaluate the mean values Θ̄

(c)
Bh and Θ̄

(c)
KL of the

considered distances over all the exploited protocols. After
having normalized such measures to the [0;1] range with a
min-max approach for AR, MFCC, and bump features, with
no claim of optimality, we employ the value:

Θ
(c)
Bh,KL = (AR)Θ̄

(c)
Bh + (MFCC)Θ̄

(c)
Bh + (Bump)Θ̄

(c)
Bh

− (AR)Θ̄
(c)
KL −

(MFCC)Θ̄
(c)
KL −

(Bump)Θ̄
(c)
KL

(5)

as a measure of both uniqueness and permanence properties
for each channel. Figure 9 confirms that the parieto-occipital
region is the most informative area to be exploited when
using EEG signals for biometric recognition purposes. In more
detail, the computed values of ΘBh,KL are shown in Figure
10, where the considered channels are ranked according to
the proposed measure. From the reported results, it can be
clearly seen that the 4 worst performing channels show a be-
havior substantially worse from the other ones. Other notable
differences can be found from the second- to the third-most-
relevant channels (Pz and O2), from the sixth- to the seventh-
most-relevant channels (P4 and F4), and from the ninth- to
the tenth-most-relevant channels (Cz and T5). According to
such observations, reasonable selections for the number of
electrodes to be included in an EEG montage for biometric
recognition purposes would consist in using either the first 2,

6, 9, or 15 channels from the ranking provided in Figure 10.
It can be also observed that all these selections correspond to
symmetrical distributions of the electrodes over the scalp, with
the most discriminative and permanent information coming
from the scalp midline and the parieto-occipital region.

To provide an illustrative example of the observed be-
haviors, Figure 11 reports the genuine and impostor score
distributions evaluated when using AR modeling for EEG
signals acquired according to the EC protocols through the
best (Fz) and worst (T4) channels. As can be seen, the im-
postor distribution is much more overlapped with the genuine
distributions for the T4 channel than for the Fz channel.
Moreover, the genuine distributions for the T4 channel show
a larger variability, as an effect of EEG aging over a 3-year
period, with respect to the Fz-related distributions, especially
along the tails. Figure 11 makes it also clear that it would
be hard achieving good recognition performance in an EEG-
based biometric system when employing a single protocol,
using a single channel and modeling EEG data with a single
representation, due to the large overlap between impostor and
genuine distributions. Similar behaviors can be found also
when dealing with the other considered acquisition protocols
and EEG representations.

B. Performance analysis

As mentioned in the previous section, the proposed HMM
modeling with N = M = 4 is employed in the performed
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Fig. 7. ΘBh maps for AR modeling. (a): EC; (b): EO; (c): MC; (d): SI.

Fig. 8. ΘKL maps for AR modeling. (a): EC; (b): EO; (c): MC; (d): SI.

Fig. 9. Topographic maps obtained through statistical analysis. (a):
(AR)Θ̄Bh; (b): (MFCC)Θ̄Bh; (c): (Bump)Θ̄Bh; (d): (AR)Θ̄KL; (e):
(MFCC)Θ̄KL; (f): (Bump)Θ̄KL; (g): ΘBh,KL

statistical analysis to generate similarity scores between com-
pared EEG signals. In order to show the effectiveness of
HMMs as learning method for EEG discriminative charac-
teristics, we report in Table II a comparison between different
configurations of the proposed approach and other methods
exploited in the literature of EEG-based biometric recognition
systems, including distance-based comparators using L1, L2,
cosine, and Mahalanobis distances. For these latter approaches,
two EEG recordings are compared by first evaluating the
distances between the representations extracted from a veri-
fication epoch and from each of the E epochs available in the
enrolment dataset. The minimum among the computed dis-
tances is therefore selected as representative dissimilarity score
b
(c)
i for the i-th verification epoch. Furthermore, Gaussian

mixture models (GMMs) are employed to represent features
extracted from enrolment epochs through distributions made
of M Gaussians. In this case, a similarity score b(c)i is obtained
as the probability that features taken from the examined i-th
verification epoch belong to the estimated distribution.

The results in Table II are expressed as EERs computed
when comparing EEG signals captured with all the 19 con-
sidered channels during different sessions, from the 30 users
whose traits are collected for a 3-year period, averaged over
all the possible time distances ∆t, t = 1, . . . , 5 between
enrolment and verification. The best average results obtained
when varying the thresholds ΦV and ΦR, for 45s-long verifi-
cation probes, are reported for each considered protocol, EEG
representation, and comparison method. The reported rates
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Fig. 11. Genuine (ψ∆t , t = 1, . . . , 5) and impostor (φ) score distributions
obtained with AR features for EC EEG recordings. (a): Fz ; (b): T4.

show that HMMs outperforms the other approaches for all the
employed EEG representations and all the exploited acquisi-
tion protocols. In more detail, the best results are commonly
obtained when adopting N = M = 4. It is worth specifying
that such configuration does not always guarantee the best
possible results, regardless of the temporal distance between
the signals to be compared. Yet, it guarantees on average
the best expected outcomes, considering all the possible time
lapses between enrolment and verification. Therefore, it is
selected for both the performed statistical analysis and for the
experiments described in the following.

Exploiting the channel ordering shown in Figure 10 ob-
tained through the performed statistical analysis, the recogni-
tion performance for each considered acquisition protocol are
estimated for an increasing number of employed electrodes in
Figure 12. Specifically, we provide the mean EERs obtained
over 10 performed runs for each scenario when comparing
EEG signals captured at the longest considered time distance
∆5, using verification probes lasting 45s, and representing
EEG data with AR, MFCC, and bump features. As can be seen,
the achievable recognition rates improve when increasing the
number of employed channels, reaching a plateau when using
the best 15 channels which will be therefore employed for the
tests described in the following.

The results related to the longitudinal analysis are given in
Figures 13, 14, and 15, where the recognition performance
expressed in terms of 95% confidence intervals of the achiev-
able EERs are depicted for the considered AR, MFCC, and
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TABLE II
EER (IN %) AVERAGED OVER THE CONSIDERED TIME DISTANCES ∆t , t = 1, . . . , 5, FOR THE CONSIDERED LEARNING METHODS.

Protocol EEG
feature

Comparison method

L1 L2 Cos. Mahal. GMM HMM
N=2 N=4 N=8

M=2 M=4 M=8 M=2 M=4 M=8 M=2 M=4 M=8 M=2 M=4 M=8

EC
AR 11,1 10,5 14,1 13,6 12,0 10,7 10,8 7,3 6,9 7,2 7,0 6,6 6,8 7,2 6,9 6,9

MFCC 12,7 12,4 22,1 15,5 14,2 13,2 13,9 7,0 6,7 7,0 6,8 6,5 6,5 6,9 6,7 6,8
Bump 20,2 19,4 17,3 21,3 19,8 18,9 18,9 17,1 16,8 17,2 16,4 15,9 16,2 16,9 16,6 16,7

EO
AR 16,8 17,0 16,9 18,1 17,9 16,8 17,1 11,9 11,0 11,4 11,4 10,6 11,1 11,7 10,8 10,8

MFCC 17,6 17,5 30,3 17,3 17,7 17,4 17,1 12,3 11,4 11,8 11,7 10,8 11,3 12,1 11,1 11,0
Bump 24,1 24,2 24,7 32,4 25,7 24,2 28,2 23,4 21,1 21,6 22,9 20,4 22,7 23,2 20,9 20,8

MC
AR 16,3 15,3 13,6 18,1 14,9 14,7 17,4 12,3 11,2 11,8 11,8 10,7 11,4 12,1 11,0 11,3

MFCC 16,7 16,7 26,1 17,2 17,1 16,6 18,1 12,9 12,3 12,8 12,3 11,6 11,8 12,7 11,9 12,1
Bump 27,7 27,9 19,2 32,4 29,2 30,9 35,6 21,5 19,9 20,2 20,3 18,8 20,1 21,0 19,5 19,7

SI
AR 14,3 14,4 15,6 17,6 16,3 14,2 15,9 10,8 9,9 10,3 10,1 9,0 9,4 10,5 9,7 9,9

MFCC 18,9 19,0 26,2 18,4 19,1 17,9 19,1 11,6 10,5 11,2 11,2 10,1 10,5 11,5 10,4 10,6
Bump 36,2 35,4 19,3 34,3 38,3 36,0 40,0 19,1 17,4 18,1 18,3 16,9 17,4 18,9 17,1 17,4
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Fig. 12. EER vs no. of used channels, for EEG signals compared at time distance ∆5 and 45s-long verification probes. (a): EC; (b): EO; (c): MC; (d): SI.

bump EEG representations, respectively. In more detail, we
report the performance obtained when considering both the
EEG signals taken from the 30 subjects acquired during all
the 6 scheduled sessions, as well as those from the 45 subjects
acquired in the first 5 sessions. The reported recognition rates
show a performance degradation over the considered 3-year
time period. Such behavior has not been observed in [5], where
3 sessions spanning a 1-month period have been considered.
In order to counteract the degraded recognition performance
due to the observed aging effect, we propose some possible
mitigation strategies in the next section.

VII. AGING EFFECTS COUNTERMEASURES

The longitudinal analysis reported in the previous sections
highlights that aging effects in EEG signals cannot be ne-
glected, when considering a wide time span between enrol-
ment and verification. In the following we propose different
strategies to counteract these undesirable effects.

A. Template update

Template update is one of the strategies most commonly
used to contrast the effects of aging in biometric recognition
systems [49]. In our tests, given the verification session Sj , the
enrolment dataset is built by collecting EEG signals acquired
during all sessions St, with t < j, at a distance of at least
∆k, with k = 1, · · · , 5 (see Fig. 4), from session Sj . The
EEG data associated to each considered scenario are specified
in Table III. For the sake of a fair comparison, we consider

TABLE III
DATA EMPLOYED FOR TESTS WITH TEMPLATE UPDATE.

Distance Enrolment Verification
∆1 S1, S2 S3

∆2 S1, S2, S3 S4

S1, S2, S3, S4 S5

∆3 S1, S2, S3 S5

∆4 S1, S2, S3, S4, S5 S6

∆5 S1, S2, S3 S6

an overall number of enrolment epochs E equal to that used
when analyzing single-session enrolment scenarios.

Figures 16, 17, and 18 show the recognition rates respec-
tively obtained with AR-, MFCC-, and bump-based EEG rep-
resentations, when exploiting multi-session enrolment. Com-
paring these results with those in Figures 13-15, the perfor-
mance improvement due to the template update approach is
clearly noticeable, with the bump representation being the one
that most benefits from template-update strategies. In more
detail, it is possible to notice that, although an improvement
in terms of absolute accuracy can be achieved when resorting
to multi-session enrolment, as already evidenced in [5], such
approach does not significantly reduce the performance vari-
ability observed across time. The strategies described in the
following are proposed to further deal with this issue.

B. EEG representation

Multiple EEG representations can be jointly exploited to
improve the achievable recognition rates and reduce their
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Fig. 13. EER at time distances ∆t, t = 1, . . . , 5, 45s-long verification probes, C = 15 channels, AR features. (a): EC; (b): EO; (c): MC; (d): SI.
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Fig. 14. EER at time distances ∆t, t = 1, . . . , 5, with 45s-long verification probes, C = 15 channels, MFCC features. (a): EC; (b): EO; (c): MC; (d): SI.
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Fig. 15. EER at time distances ∆t, t = 1, . . . , 5, with 45s-long verification probes, C = 15 channels, bump features. (a): EC; (b): EO; (c): MC; (d): SI.

variability over time. In our tests we have implemented fusion
strategies at the feature-, score-, and decision-level, based on
the employed AR, MFCC, and bump representations. Among
the considered approaches, decision-level fusion provides the
best recognition performance. Specifically, a positive decision
on the i-th verification epoch is taken according to the follow-
ing rule:

zi =

{
1 if (AR)zi + (MFCC)zi + (Bump)zi ≥ 2

0 otherwise
(6)

The obtained recognition rates are reported in terms of 95%
confidence intervals in Figure 19. The improved recognition
rates, and the reduced performance variability for all the
considered acquisition protocols, testifies the effectiveness of

the proposed fusion scheme, which exploits the heterogeneity
of aging effects on different biometric representations to limit
their impact on the achievable verification accuracy. High-level
permanence is obtained especially for the EC scenario, where
EERs below 4% can be guaranteed even when comparing EEG
signals captured at a time distance of 3 years.

This system configuration is further analyzed in order to
evaluate the effects of the number of employed channels
and of the length of the verification probe on the achievable
recognition performance. Specifically, Figure 20 shows the
mean EERs obtained, at time distances ∆3 and ∆5, when
varying the number of electrodes used for EEG acquisition,
considering the channel ranking provided in Figure 10. It can
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Fig. 16. EER at time distances ∆t, t = 1, . . . , 5, with 45s-long verification probes, C = 15 channels, AR features, multi-session enrolment. (a): EC; (b):
EO; (c): MC; (d): SI.
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Fig. 17. EER at time distances ∆t, t = 1, . . . , 5, with 45s-long verification probes, C = 15 channels, MFCC features, multi-session enrolment. (a): EC;
(b): EO; (c): MC; (d): SI.
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Fig. 18. EER at time distances ∆t, t = 1, . . . , 5, with 45s-long verification probes, C = 15 channels, bump features, multi-session enrolment. (a): EC; (b):
EO; (c): MC; (d): SI.

be seen that most of EEG discriminative capability can be
exploited using only 9 electrodes, as outlined in Section VI-A.

Actually, an even lower number of channels could be
considered to further improve the usability of EEG-based
biometric recognition systems in practical applications, but
the resulting performance would show a larger variability over
time. In order to illustrate this effect, three different scenarios
are evaluated in the following while taking into account the
observations reported in Section VI-A, using C = 4, C = 6
and C = 9 channels in the adopted EEG montage. Figures
21-23 show the mean EERs obtained for each acquisition

protocol when varying the number of epochs involved in the
verification process, for the three considered scenarios. The
reported results show that considerable recognition accuracies
could be already achieved when exploiting only C = 4
channels, although a not negligible variation over time is
noticeable in this case. Improved stability can be obtained
when two additional electrodes are considered, while the use
of C = 9 channels further improves the achievable recognition
rates, attesting the reliability of the proposed statistical analysis
and the resulting channel ranking in terms of both uniqueness
and permanence properties.
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Fig. 20. EER vs no. of employed channels, for EEG signals compared at either ∆3 and ∆5 time distances, with 45s-long verification probes, multi-session
enrolment, and decision-level fusion of AR, MFCC and bump features. (a): EC; (b): EO; (c): MC; (d): SI.

C. Elicitation protocol fusion

The results obtained with the previous analysis are exploited
when evaluating the third proposed countermeasure against
EEG aging effects, exploiting fusion at the protocol level.
Specifically, Figures 21-23 show that limited improvements
are typically gained when using, for verification purposes,
EEG signals lasting more than 26s in EC and EO conditions,
40s for MC conditions, and 38s for SI. EEG signals with
such lengths are therefore employed as verification probes for
the considered elicitation protocols, whose final decisions x
are fused according to the OR rule, which guarantees better
recognition accuracy and stability with respect to other fusion
rules, according to the performed experimental tests. Figure
24, 25, and 26 show the performance obtained when exploiting
different combinations of the considered elicitation protocols,
and adopting EEG montages with C = 4, C = 6 and C = 9
channels, respectively. The reported results show that although
remarkable results can be achieved even exploiting only C = 4
EEG electrodes in the adopted EEG montage, the inclusion
of more channels and more protocols not only improves the
achievable recognition rates, but also their stability over time.
Actually, an EERs below 2% for all the considered time
distances, when employing C = 9 electrodes and all the
employed elicitation protocols, can be achieved.

VIII. CONCLUSIONS

A detailed longitudinal analysis on the discriminative char-
acteristics of EEG signals captured in both resting and active
states, performed on a database comprising signals captured
from 45 users during 5 to 6 sessions, covering an overall
period of about 3 years, has been presented. HMMs have
been employed to model and compare EEG representations
expressed through AR, MFCC, and bump features. Both the
performed statistical and performance analysis, respectively
investigating the behavior of the genuine score distributions
and of the achievable recognition rates for different time
distances between enrolment and verification phases, have
evidenced that aging actually affects EEG biometric traits.
Besides providing a ranking of the EEG channels employed in
the adopted montage, taking into account both uniqueness and
permanence capabilities, several strategies for mitigating EEG
aging effects have been also proposed, showing that EERs
below 2% can be achieved also when comparing samples taken
at temporal distances in the order of years.
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