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Abstract: In this paper we propose a novel approach for palm vein recognition relying on high dynamic range (HDR) imaging.
Specifically, we speculate that the exploitation of multiple-exposure vein images guarantees better recognition performance than
a baseline system relying on single-exposure acquisitions. In order to verify our assumptions, a multiple-exposure dataset is col-
lected from 86 subjects, with twelve sets of palm vein images captured for each user. Each set is composed by five images,
acquired at different exposures, which can be fused to generate a HDR representation of the actual vein pattern. Local binary pat-
tern (LBP) and local derivative pattern (LDP) are employed to extract features from single-exposure images, raw HDR images, and
tone-mapped HDR images. The obtained experimental results show that significant performance improvement can be achieved
when discriminative features are extracted from HDR contents, with respect to the use of single-exposure images.

1 Introduction

In recent years, automatic human identification has become one of
the most requested tasks in the field of commercial applications, such
as e-commerce, ATM cash withdrawals, smartphone unlocking, and
government applications, such as border and security controls. The
most demanding requirement all these systems share is the security
they need to provide. Possible ways to automatically authenticate
users is through knowledge-based systems, e.g. passwords, that can
be stolen or forgotten, or through token-based systems, e.g. smart
cards, that can be lost or robbed. In order to overcome the secu-
rity issues affecting the aforementioned authentication modalities,
biometrics, that is automatic recognition of individuals based on
their physiological and/or behavioral characteristics, is extensively
employed in many applications [1].

Among the existing biometric identifiers, one of the emerging
biometric trait is vein pattern. Recently, the use of vein patterns
for biometric recognition is being attracting more and more interest
from both the industries and the research community [2]. In fact, the
exploitation of such traits guarantees several advantages compared
to the use of other biometric identifiers [3]. First, vein patterns are
not exposed biometric characteristics, imaged using near-infrared
(NIR) cameras and illumination, therefore difficult to steal and repli-
cate. In addition, vein-based acquisition devices are contactless, thus
entailing convenience for the users. Moreover, liveness detection is
easily performable. On the other hand, vein-pattern images are often
characterized by low contrast and poor definition, due to the sub-
cutaneous placement of the veins, thus making vein-related feature
extraction a challenging process [4].

In our work, a novel approach for palm vein recognition is
proposed. In order to overcome the disadvantages due to the low con-
trast of the acquired vein patterns, we rely on high dynamic range
(HDR) imaging techniques [5–7], thus following a sensor-level
fusion approach. Pictures of the same vein structure are acquired
with a constant light source but setting different exposure times and
then combined in order to generate images with an improved qua-
lity. In detail, pictures where the ratio between luminance of the
lightest and darkest areas is higher than the one obtained in a single-
exposure image, namely low dynamic range (LDR) image, can be
generated by the HDR processing. As extensively shown in Section
5, this may allow better feature extraction, guaranteeing significant
improvements of the recognition performance.

The rest of this paper is organized as follows: after presenting
the state of the art of palm vein recognition in Section 2, a brief
overview of the image quality issues in vein recognition systems
and of HDR imaging is given in Section 3. Section 4 describes the

employed palm vein recognition system, including preprocessing,
feature extraction, and matching techniques. Section 5 explains the
setup of our experimental study and provides the obtained results. A
comparison between the performance achievable through the pro-
posed approach, and what can be obtained using different image
enhancement methods and a score-level fusion approach, is also
given. Eventually, some conclusions are drawn in Section 6.

2 Palm vein recognition: state of the art

Vein pattern recognition systems employing finger veins [8], palm
veins [9], hand dorsal veins [10], and wrist veins [11] have been
proposed in literature, together with different approaches for the
extraction of representative features from the network of blood ves-
sels. Specifically, local or global statistical-based (SB) methods,
using statistical features as the local binary histogram and moments,
have been exploited to extract discriminative information from vein
structures [12, 13]. Methods based on local binary patterns (LBPs)
[14] and local derivative patterns (LDPs) [15] are worth to be
mentioned among feature extraction techniques based on local statis-
tics. Approaches relying on local invariant (LI) features, such as
scale invariant feature transform (SIFT) [16, 17] or speeded-up
robust features (SURF) [18, 19], have been also exploited. Sub-
space projections (SP), namely principal component analysis (PCA),
linear discriminant analysis (LDA), non-negative matrix factoriza-
tion (NMF), and independent component analysis (ICA), have been
evaluated in literature too [20–22]. In addition, vein segmentation
(VS) or minutiae and crossing points extraction have been applied
for vein pattern processing [23].

In this work, we propose a biometric system relying on palm-vein
features. Many works on such biometric trait have been proposed,
and some of the most relevant ones are summarized in Table 1. In
the aforementioned table, details of the employed database, as well
as about the proposed feature extraction techniques, category and
matching strategies, are reported together with the achieved recog-
nition performance. The features exploited in this work to perform
palm vein recognition are described in Section 4.4.

3 Vein patterns and high dynamic range

It is well known that blood hemoglobin absorbs NIR light. There-
fore the vein pattern imaging is carried out through a NIR camera
and a NIR illumination system. This latter has to be properly cal-
ibrated in order to allow the light to penetrate skin and tissues till
reaching the blood vessels, which would appear as dark lines in the
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Table 1 Overview of state-of-the-art contributions in the field of palm vein recognition.

Reference Database Employed System PerformanceDB Name Palms Samples Categ. Feat. Extract Matching

Mirmohamadsadeghi CASIA V1.0 [25] 200 6 SB LBP Histogram Intersection CIR = 93.20%
et al. [24] LDP CIR = 97.00%

Kang et al. [13] CASIA V1.0 [25] (left hands) 100 6 SB
Mutual foreground LBP Chi-square distance EER = 2.53%

Mutual foreground LBP Chi-square distance + EER = 0.267%SVM score fusion

Tome et al. [26] VERA Palmvein [26] 220 10 SB LBP Histogram intersection EER = 3.75%

Pratiwi et al. [27] CASIA V1.0 [25] 200 6 SB LBP Rotation Invariant Cosine Distance CIR = 96%
EER = 11.7%

Ladoux et al. [28] Own 24 60 LI SIFT Euclidian distance EER = 0.14%

Kang et al. [17]
CASIA V1.0 [25] 200 6

LI
RootSIFT RootSIFT matching + EER = 0.996%LBP-based mismatching removal

Own 210 6 RootSIFT RootSIFT matching + EER = 3.112%LBP-based mismatching removal

Zhou et al. [16]
CASIA V1.0 [25] 200 6

SP

NMRT Hamming distance EER = 0.51%
Hessian Phase EER = 0.44%

PolyU [29] 500 12 NMRT Hamming distance EER = 0.004%
Hessian Phase EER = 0.43%

Lee [30] Own 207 20 SP Modified (2D)2LDA Euclidian distance CRR = 99.41%

Zhang et al. [31] Own 24 6 VS Matched filters Hamming distance EER = 4.00%

Lee et al. [9] Own 207 20 VS Adaptive Gabor filter Normalized Hamming distance EER = 0.44%

Wu et al. [32] Own 256 20 VS Gaussian filter bank Normalized Hamming distance EER = 0.518%

Wirayuda [33] CASIA V1.0 [25] (left hands) 100 6 VS Minutiae features Weighted Euclidean distance CIR = 90.87%

Cancian et al. [34] Own 24 3 VS 2D Gabor filters Hellinger distance EER = 1.84%

acquired image. Unfortunately, vein structures are not evenly posi-
tioned under the skin with respect to the imaging and illumination
devices, with the result that the obtained images may appear sat-
urated if too much illumination power is employed, or dark if not
enough illumination is used. Moreover, the transmittance of the NIR
light across the different tissues of the hand is not uniform, due to the
different thickness of bones and tissues. This results in veins from
the thicker parts of the hand being less distinguishable compared
to veins located in the thinner parts. Additionally, being standard
camera sensors commonly able to handle only 8-bit images, the full
luminance dynamic range cannot be sensed, thus producing low-
contrast images with potential loss of details and useful information.
Examples of the aforementioned issues are shown in Figs. 1 and 3.
All these undesired effects impact on the quality of the captured vein
pattern, leading to a degradation of the recognition accuracy in a
biometric system. Thus, improving the quality of the captured vein
images is a crucial task in a vein-based recognition system.

Different solutions have been proposed in order to face the afore-
said problems. Contrast enhancement techniques have been deeply
investigated in literature as a solution to face the uneven illumina-
tion in the acquired vein pattern images [35, 36]. However, image
enhancement is not able to recover the information loss due to
either overexposure or underexposure of some regions of the picture.
Therefore, several works about the adjustment of the illuminance
distribution of the lighting system have been proposed [37, 38]. In
detail, an uniform illumination in the acquired vein pattern image
is obtained by adapting the light source during each image capture.
The disadvantages of this kind of approach are that, being the light
source modified each time, the system settings vary from acqui-
sition to acquisition and the process of illumination adjustment is
typically time consuming. Eventually, multimodal biometric fusion
schemes have been extensively proposed in order to increase the sys-
tem accuracy. Among them, multispectal image-level fusion, that is
the combination of palm vein and palmprint images [22, 39], and
feature-level fusion approaches [40] can be mentioned.

In order to counteract the aforementioned undesired effects, we
propose a vein pattern recognition system performing information
fusion at the sensor level, relying on HDR imaging techniques able
to synthesize images with dynamic range far larger than the one rep-
resentable in LDR images [7, 41]. The increase of dynamic range
can be generated either directly capturing HDR images exploiting
specialized devices, which are usually bulky and costly, or merging
a set of single-exposure images acquired at different shutter speeds,
namely using a bracketing-based approach. This latter allows recon-
structing the original dynamic range and capturing details from both
the image’s brightest and darkest areas, taking details pertaining to
dark areas from LDR pictures captured with high shutter speeds and
contents from very bright regions from low-exposures pictures. The
quality of the generated HDR content is therefore typically higher
than what is present in its LDR counterpart.

4 Employed palm vein recognition system

4.1 Image Acquisition

The employed acquisition setup consists of a NIR camera and a
NIR illuminator. During each registration a set of N LDR images
is acquired at different shutter speeds. Examples of images acquired
using our experimental setup are given in Figs. 1 and 3. Imple-
mentation details of the employed framework are given in Section
5.1.

4.2 Preprocessing

A region of interest (ROI) containing the palm vein pattern, with size
240×240, is first extracted from the acquired image. A non-linear
image processing is then performed to face the issue of non-uniform
background illumination and low contrast in vein pattern images.
In detail, the ROI images are divided into blocks of 20×20 pixels,
with 4-pixel overlap between two adjacent blocks. For each block the
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(a) (b) (c) (d) (e)
Fig. 1: Palm vein LDR images acquired with exposure time to (a) 0.036s (b) 0.042s (c) 0.048s (d) 0.054s (e) 0.060s.

(a) (b) (c) (d) (e) (f)
Fig. 2: HDR vein images after (a) iCam06 [42] (b) Chiu [43] (c) Drago [44] (d) Ferbman [45] (e) Shan [47] (f) Shibata [48] tone mapping
methods applied on the merged LDR images of Fig. 1.

(a) (b) (c) (d) (e)
Fig. 3: Palm vein LDR images acquired with exposure time to (a) 0.036s (b) 0.042s (c) 0.048s (d) 0.054s (e) 0.060s.

(a) (b) (c) (d) (e) (f)
Fig. 4: HDR vein images after (a) iCam06 [42] (b) Chiu [43] (c) Drago [44] (d) Ferbman [45] (e) Shan [47] (f) Shibata [48] tone mapping
methods applied on the merged LDR images of Fig. 3.

average gray level is computed. The set of obtained mean values is
then expanded into 20×20 blocks using a bicubic interpolation, gen-
erating the estimated background illumination. This latter is finally
subtracted from the considered image, thus obtaining the enhanced
vein pattern. We will refer to the described preprocessing method as
background-removal (BR) preprocessing in the next sections.

4.3 HDR content generation

In order to generate the desired HDR vein pattern representation,
the N different single-exposure images are combined through a
weighted sum of their LDR luminance contents, taking into account
the camera response function (CRF) and the exposure time of each
picture [5]. The aim of the employed weighting function is to give
more importance to middle luminance values while removing possi-
ble outliers. We refer to the image obtained by combining the LDR
sources as raw HDR image.

The obtained HDR content can be later processed in order to prop-
erly represent the dynamic range on LDR devices, by means of tone
mapping operators (TMO). Specifically, the aim of a TMO is to adapt

the high dynamic range of the merged images to a low dynamic range
device, still keeping details and contrast of the raw HDR data.

In this paper we apply several TMOs, specifically iCam06 [42],
Chiu [43], Drago [44], Farbman [45], Reinhard [46], Shan [47],
and Shibata [48], and evaluate the recognition performance on the
so-obtained tone-mapped HDR images. Examples of tone-mapped
HDR images, generated from the data shown in Figs. 1 and 3, are
given respectively in Figs. 2 and 4.

4.4 Feature extraction

Two feature extraction approaches based on local textures, namely
local binary pattern and local derivative pattern, are here used to
obtain palm vein descriptors.

4.4.1 Local binary pattern: The LBP operator is a texture
descriptor based on the gray level differences and comparisons of a
neighborhood of pixels [15, 49]. Given a central pixel Z0, anR×R
neighborhood of P pixels is thresholded by the value of the central
pixel and the LBP code for each center pixel of a greyscale image I
is obtained as:
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Fig. 5: An example of (a) LBP and (b) LDP neighbourood

LBPP,R(Z0) =

P∑
p=1

f(Zp, Z0)2
p−1 (1)

where Zp is one of the P neighbors of Z0, as shown in Fig. 5a. If the
pth neighbor is not a single pixel of the image, a weighted average
of the selected pixels is performed, where the weights depend on the
distance of the pixels with respect to Z0. The thresholding function
f(Zp, Z0) can be represented as:

f(Zp, Z0) =

{
0, if I(Zp)− I(Z0) < 0
1, if I(Zp)− I(Z0) ≥ 0.

(2)

Each LBP code represents a micro-pattern of the image and
it is saved in a histogram which contains information about the
occurrence of the different kind of micro-pattern.

4.4.2 Local derivative pattern: The LDP operator is a high-
order texture descriptor which extracts the derivative direction vari-
ation information [15, 50]. The directions considered to compute
derivatives are 0◦, 45◦, 90◦ and 135◦, where the derivatives along
each direction are computed by subtracting pixels of a neighborhood
according to the selected direction. In detail, the first-order deriva-
tives along the four directions, with respect to a given central pixel
Z0, are computed as follows:

I ′0◦(Z0) = I(Z0)− I(Z4)

I ′45◦(Z0) = I(Z0)− I(Z3)

I ′90◦(Z0) = I(Z0)− I(Z2)

I ′135◦(Z0) = I(Z0)− I(Z1)

(3)

where Z1, . . . , Z4 are four of the neighbors around the center pixel
chosen according to the direction of the derivative, as shown in
Fig. 5b. For a given direction α and central pixel Z0, the second
order LDP code is encoded through the concatenation of the bits
corresponding to each neighbor:

LDP 2
α(Z0) =

{
f(I ′α(Z0), I

′
α(Z1)), . . . ,

f(I ′α(Z0), I
′
α(Z8))

}
(4)

where the function f(I ′α(Z0), I
′
α(Zi)) is a binary function provid-

ing the type of local pattern, defined as:

f(I ′α(Z0), I
′
α(Zi)) =

{
0, if I ′α(Z0) · I ′α(Zi) > 0
1, if I ′α(Z0) · I ′α(Zi) ≤ 0 ,

(5)

where i = 1, 2, . . . , 8 is the neighbor’s index.
The obtained codes are converted into a decimal value and stored

into an histogram which represents the image descriptor. This for-
mulation can be generalized for the nth order LDP, considering the
(n− 1)th order derivatives in the four directions in the computation
of the LDP codes.

5 Experiments

5.1 Experimental setup

The palm vein database employed for our experimental tests is col-
lected using a Visiosens VFU-V024-M-H-C NIR camera as acqui-
sition device, and an array of NIR leds (wavelength = 850 nm) as
illuminator. The resolution of the camera sensor is 752×480 pixels,
with 8 bit gray-scale per pixel. The CCD camera sensitive range is
between 450 and 900 nm and, in order to eliminate the effect of vis-
ible light, the B+W F Pro IR 093 optical infrared filter, with cut-on
wavelength at 825 nm, is mounted in front of the camera’s lens.

The acquisition process is carried out using a docking device for
hand placement and ROI extraction, consisting of a window of the
desired dimension and pegs for correct hand positioning, to reduce
both misalignment and registration problems. The processed ROI
consists of 240×240 pixels, corresponding to a vein width of about
2-8 pixels.

Data from 86 subjects are collected in the employed dataset. The
right palm of each subject is acquired five times at exposure time
T ∈ {0.036, 0.042, 0.048, 0.054, 0.060}s, entailing a total capture
time of about Ttot = 0.24s. This process is iterated twelve times
for each palm, thus obtaining a dataset of 86 users × 12 palms × 5
exposures.

Features are extracted from single-exposures images, from raw
HDR image, and from tone-mapped HDR images, considering both
the LBP and LDP extraction methods. In our tests, LBP features
are extracted considering P = 16 neighbors and a neighborhood
radius R = 8. The LBP operator is applied to 16 non-overlapping
60×60 blocks, with the LBP computed on (2R+ 1) x (2R+ 1)
sub-blocks centered around each pixel of the block. The histograms
resulting from the application of the LBP to each block consist of
P (P − 1) = 240 bins, then concatenated to generate the palm vein
template. When LDP is applied, the second-order operator is cho-
sen and a radius of 5 pixels from the central pixel is set when the
feature extraction step is performed. The image is divided into 16
non-overlapping 60×60 blocks, and the derivatives in the four direc-
tions are computed for all the pixels of each block. The resulting
LDP block histograms are concatenated to obtain the palm vein tem-
plate, resulting of number of blocks · number of directions ·28 =
16384 elements.

Given the so-computed templates, a matching score is obtained
through the histogram intersection measure [51], defined as:

H(p, q) =

∑
imin(pi, qi)∑

i qi
(6)

where p and q are the two histograms to be compared, each one
consisting of i bins, with

∑
i qi = 240·240.

HDR images are generated using both all the N = 5 images
collected at different exposures, as well as only N = 3 of them,
specifically the image at middle-exposure and the two having lower
and the higher exposure time w.r.t. the middle one.

In order to perform a comprehensive analysis, we compare the
performance of the proposed approach with what obtained when
different image enhancement techniques are applied on the origi-
nal LDR palm vein images. In detail, some proposed enhancement
techniques for vein images are considered:

• histogram equalization (HE),

• contrast limited adaptive histogram equalization (CLAHE),

• circular gabor filter (CGF) [52],

• high-frequency emphasis filtering (HFE) [53],

• local-ridge-enhancement (LRE) [54],

• Retinex method (RM) [55].

The aforementioned techniques are applied to the originally
acquired LDR images, which are then further preprocessed through
the background-removal (BR) method, described in Section 4.2, thus
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Table 2 EER (%) obtained considering LBP and LDP feature extraction methods applied on the single middle-exposure image, on single-exposure images fused at
score level, on raw HDR images and on tone-mapped HDR images.

Middle Exposures Score Level Raw HDR iCam06 Chiu Drago Farbman Reinhard Shan Shibata
Exposure Fusion (no TMO) [42] [43] [44] [45] [46] [47] [48]

LBP 3.81 5 3.63 2.97 2.65 2.51 2.97 2.99 2.98 2.96 2.59
3 3.63 3.23 2.86 2.71 3.22 3.13 3.21 3.12 2.51

LDP 3.17 5 3.24 2.00 1.94 1.74 2.00 2.06 2.00 1.74 1.75
3 2.97 2.06 2.19 1.94 2.13 2.19 2.07 2.06 2.06
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Fig. 6: DET curves obtained considering LBP features extracted from sets with (a) 3 and (b) 5 LDR images and considering LDP features
extracted from sets with (c) 3 and (d) 5 LDR images.

obtaining the desired enhanced images. Finally, in order to have a
performance comparison between the proposed approach based on
sensor-level fusion and alternative information fusion methods, we
also perform a score-level fusion approach [56] to combine the out-
puts obtained when matching features extracted either from the raw
single-exposure images or from the enhanced vein images.

5.2 Experimental results

Tables 2 and 3 show the equal error rates (EERs) obtained when
the LBP and LDP feature extraction methods are applied to the
considered images. As first step, features extracted from each single-
exposure image are matched in order to evaluate the performance for

each considered exposure. The best performance is obtained when
considering middle-exposure images, that is the image acquired
when the exposure time is set to T = 0.048 s, with the achieved
values reported in Table 2. The scores obtained from each single-
exposure image are later combined following score-level fusion
approaches, namely using the mean, minimum, and maximum rules.
Sets with either 3 or 5 exposures have been exploited. The best
results are obtained when the maximum between the scores is con-
sidered in the decision step, with corresponding values reported in
Table 2. LBP and LDP operators are also applied to HDR data,
before and after the application of the considered TMOs, with
the obtained EERs reported in Table 2. Table 3 shows the results
obtained when different vein image enhancement techniques, listed
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Fig. 7: DET curves obtained considering LBP feature extraction method applied on the enhanced vein images and then combining the scores
of (a) 3 exposures (b) 5 exposures enhanced pictures and considering LDP feature extraction method applied on the enhanced vein images and
then combining the scores of (c) 3 exposures (d) 5 exposures enhanced pictures.

Table 3 EER (%) obtained when LBP and LDP features are extracted
only from the middle-exposure image preprocessed with the different image
enhancement methods.

BR HE CLAHE CGF HFE LRE RM

+ BR + BR + BR + BR + BR + BR

LBP 3.81 3.70 4.69 3.21 5.49 3.10 3.15

LDP 3.17 3.03 4.46 2.71 4.27 2.90 3.41

in Section 5.1, are applied to the middle-exposure image and, then,
the background-removal (BR) preprocessing is performed. Besides,
the performance regarding the score-level fusion approach applied
to the results obtained from 3 or 5 exposures images enhanced with
the considered preprocessing methods are presented in Table 4. In
this case, we found out the mean rule being the best performing
score-level fusion strategy. Finally, we performed additional tests
to analyze the impact on performance of applying the aforemen-
tioned enhancement techniques to the LDR images to be fused and
then performing the HDR approach applying the best performing
TMO. The results obtained are not reported in this paper because
no performance improvement is achieved in comparison to classical

Table 4 EER (%) obtained considering the LBP and LDP features extracted
from the enhanced LDR vein images and then performing a score-level fusion
approach.

Exposures
HE CLAHE CGF HFE LRE RM

+ BR + BR + BR + BR + BR + BR

LBP
5 3.42 4.18 3.21 5.02 2.97 2.84

3 3.38 3.54 3.10 4.90 3.03 2.91

LDP
5 2.71 3.81 2.59 4.16 2.45 2.91

3 2.67 3.94 2.72 4.07 2.45 3.00

HDR approach. This was an expected behavior since the enhance-
ment techniques modify the contrast of the LDR image and the HDR
fusion process may not work correctly.

The detection error trade-off (DET) curves of systems based on
middle-exposure images only, on score-level fusion of the available
multi-exposure information, on raw HDR content, and on tone-
mapped HDR data are also plotted in Fig. 6 for LBP and LDP
features. When no HDR imaging techniques are considered, better
recognition accuracy can be achieved when the image enhancement
step is performed and the score-level fusion approach is then applied,
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Table 5 Acquisition and processing time (s) when the HDR imaging approach
is considered.

Step Required computational time
3 Exposures 5 Exposures

Image acquisition 0.1440 s 0.2400 s

Raw HDR image fusion 0.0176 s 0.0278 s

Tone mapping

iCam06 TMO [42] 0.1971 s
Chiu TMO [43] 0.3756 s
Drago TMO [44] 0.0058 s
Farbman TMO [45] 0.1444 s
Reinhard TMO [41] 0.0034 s
Shan TMO [47] 0.6133 s
Shibata TMO [48] 1.1158 s

compared to the performance obtained when no combination of the
scores is done. For this reason, only results of Table 4 are plotted in
the DET curves of Fig. 7.

Eventually, we evaluated the increase in processing time when
adopting the sensor-level-fusion strategy in comparison to the base-
line system. Our experiments are performed on a Core i7-6800K
CPU @ 3.40 GHz with 64.0 Gb of RAM and the algorithms are
implemented in MATLAB. In detail, in our HDR-based approach
additional time is required in the stages of image acquisition, fusion
and possible tone mapping operation. The obtained performance is
reported in Table 5, where the shown values represent the average
times required to process all the images in the considered database.

It can be seen that extracting features from HDR images leads
to significant recognition performance improvement, when adopting
both LBP and LDP representations, with respect to processing the
original single-exposure data. In particular, when the LBP feature
extraction method is considered, an EER of 3.81% is obtained when
the middle-exposure image is considered, while an EER of 2.51% is
reached when the features are extracted from the HDR image built
from 5 LDR images fused with the Chiu TMO [43] or when 3 LDR
images are combined and then the Shibata TMO [48] is applied.
Results concerning LDP features also confirm this behavior, show-
ing an EER of 3.17% obtained when using only middle-exposure
images, and an EER of 1.74% with tone-mapped HDR content gen-
erated with 5 images taken at different exposures, both considering
the Chiu [43] and Shan [47] TMOs. The obtained results also show
that generating HDR images considering 5 exposures instead of 3
leads to better results in most of the cases. As shown in Table 5,
the best performing and less time consuming TMO is the Chiu oper-
ator and it is worth highlighting that, when the best performance
is achieved, an average total additional time of Tproc = 0.192 s
(acquisition of four additional LDR-images) + 0.0278 s (row HDR
image generation) + 0.3756 s (Chiu TMO) = 0.5954 s is needed.

It is worth remarking that the employed sensor-level fusion
approach based on HDR imaging always gives better results com-
pared to the score-level fusion strategy. It is also important to stress
out that, with respect to score-level fusion approach, exploiting
sensor-level fusion gives additional advantages in terms of required
storage space and computational cost. In fact, using HDR content
requires extracting features only from a single image, while all the
single-exposures images have to be taken into account in the feature
extraction and matching stages when score-level fusion is imple-
mented, with the further burden of storing all the derived templates.
Finally, we also show that, using HDR imaging techniques, it is pos-
sible to achieve better results compared to what obtained when the
vein images are enhanced by exploiting preprocessing techniques,
both considering the score-level fusion approach and not taking it
into account.

6 Conclusions

In this paper we have studied the impact on recognition perfor-
mance of applying HDR imaging on palm vein recognition systems,
performing a sensor-level fusion approach on images captured at

multiple exposures. The obtained results show that significant per-
formance improvement can be reached when HDR content is pro-
cessed, compared to the use of single-exposure LDR vein images.
Besides, the adoption of TMOs allows guaranteeing even further
improvements, with performance notably exceeding those achieved
when employing vein image enhancement methods and score-level
information fusion approaches.
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