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Abstract

In these years, biometric recognition based on hand vein patterns is receiving

an always increasing attention from both industry and academia, thanks to the

advantages it offers with respect to conventional approaches, such as those rely-

ing on fingerprint, iris, or face. Nevertheless, there are still several properties of

vein traits that need to be investigated and well understood. In this paper, we

here analyze the level of similarity, evaluated in terms of recognition rate of a

biometric system, of vein patterns in the fingers, palms, and dorsa of a person’s

left and right hands. In other words, we analyse whether a subject, enrolled us-

ing vein patterns, either finger-vein, palm-vein, dorsal-vein, from one hand, can

be recognized using the homologous patterns from the other hand. Our inves-

tigation is conducted using deep-learning-based feature extraction approaches,

three different vein modalities, and four different databases. The obtained ex-

perimental results show that corresponding fingers, palms, and dorsal regions

from different hands of the same subject show more resemblance with respect

to the traits from the same hand of different persons. Furthermore, our findings

point out that similarities among vein patterns in corresponding fingers could

be used for recognition purposes, while this still cannot be applied to palm and

dorsum vein patterns.
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1. Introduction

The demand for applying biometric recognition technologies in real-life ap-

plications, ranging from consumer devices to border control, from surveillance

to access control and financial services, to give few examples, is growing at an

increasing pace. Face, fingerprint, iris, and voice are the most mature biomet-

ric traits currently exploited to automatically recognize people. Among the

emerging modalities, both industry and academia are showing an always grow-

ing interest towards the exploitation of hand vein patterns, due to the several

advantages such characteristics guarantee with respect to more established bio-

metric modalities. In fact, vein patterns such as those present in the fingers,

the palms, and the dorsa of our hands are more robust to presentation attacks

than other biometric identifiers, being not publicly exposed. In addition, their

acquisition can be made using a contactless approach, thus increasing user con-

venience.

Even though several systems, employed in real-life applications, already em-

ploy hand vein patterns for automatic biometric recognition, there are still sev-

eral properties of these traits which have to be properly analyzed. Specifically,

in this paper, within a biometric recognition framework, we investigate the ex-

istence of similar characteristics in the vein patterns of the right and left hands

of the same subject. In more detail, the present study stems from our previous

analysis (Piciucco et al., 2019), and provides the following additional insights:

• in this contribution, we perform a deeper analysis with respect to the one

carried out in (Piciucco et al., 2019), where we have preliminary evaluated

the existence of similar characteristics in the vein patterns of the corre-

sponding fingers, belonging to the right and left hands of an individual.

More specifically, in this paper we check the level of similarity among vein

patterns of the right and left hand palms, of the right and left hand dorsa,

and of the corresponding fingers in the right and the left hands;

• four distinct databases, to evaluate the existence of similar patterns in the

veins of left and right hands, are here exploited, thus providing a more
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statistical significant analysis of the one in (Piciucco et al., 2019), where

a single dataset has been considered;

• hand-crafted characteristics have been mostly considered in (Piciucco et al.,

2019) to speculate about the similarity of left and right finger-vein pat-

terns. On the other hand, we here resort to deep learning approaches to

automatically process the considered traits. Specifically, we use a recently-

introduced loss function (Deng et al., 2019) to improve the discriminabil-

ity of the extracted features, even when performing an open-set training

procedure. Furthermore, two distinct learning strategies are employed

to derive the discriminative characteristics upon which our analyses are

carried out. One of them has been specifically designed to look for simi-

larities between the vein patterns of the right and left hands of a subject.

As it will be shown in the following, the employed approach is able to lo-

cate similar characteristics between corresponding pairs of vein patterns,

differently from the approaches presented in (Piciucco et al., 2019).

It is worth remarking that, to the best of our knowledge, no anatomical study

has specifically investigated the existence of similarities between vein patterns

in the left and right hands of a person. The present study, within the biometric

framework, sheds a light on the topic using deep learning strategies, specifically

designed to find such similarities.

The paper is structured as follows: in Section 2 we report a review of the

state of the art about the evaluation of possible similarities between left and right

instances of different biometric traits. Section 3 deals specifically with hand vein

patterns, presenting the physiological background of the acquisition process, and

the state-of-the-art papers. The frameworks employed in our analysis to process

the considered hand vein patterns are detailed in Section 4, while the performed

experimental tests, together with a discussion about the obtained results, are

outlined in Section 5. Eventually, some conclusions are drawn in Section 6.
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2. Similarities in Left and Right Biometric Traits of a Person

Potential similarities between biometric traits belonging to the right and left

sides of the human body have been already investigated in the past within the

biometric scenarios. The potential interchangeability of the enrolled biomet-

ric traits could lead to some benefits in real-world systems, such as avoiding

re-enrollment in case one trait becomes no more usable, temporarily or perma-

nently, thus increasing user convenience and flexibility.

Moreover, a clear understanding about the existence of such similarities

could be beneficial to optimize the design of experimental protocols, deciding

whether to exclude, from the samples used to estimate the distributions of the

impostors’ recognition scores, the traits belonging to a body side other than the

one considered for the enrolment of a genuine subject. As a matter of fact, as

a precaution, recommendations in the ISO/IEC 19795 standard (Information

technology – Biometric performance testing and reporting) suggest to avoid the

usage, as impostor attempts, of comparisons between left and right instances of

the same biometric trait of a subject, since intra-individual differences are likely

lower than inter-individual ones (International Organization for Standardiza-

tion, 2006, paragraph 7.6.1.3).

The first exploration regarding possible similarities between left and right

biometric traits of a subject has been reported in (Bowyer et al., 2010), where

the left iris of each user is compared against the right ones of all considered

subjects, relying on the binary iris template representation proposed by (Daug-

man, 2004). The obtained distance distributions, referred to comparisons be-

tween data from the same subjects and from different subjects, are basically

overlapped, confirming that the left and right irises of the same person do not

match any more closely than do the irises of different persons. Nonetheless, tests

relying on human observers, which have been asked to judge whether a pair of

left and right eye images have been taken from the same person, have been also

reported in (Bowyer et al., 2010). Interestingly, the involved observers, without

any specific knowledge on iris anatomy, correctly classified over 86% of the pre-
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sented image pairs, a percentage slightly lowered to 83% in case either only the

iris region, or only the periocular region, have been shown. Such results support

the hypothesis that similar patterns between left and right irises actually exist,

yet the employed automated iris biometric technology is not able to recognize

them as effectively as humans can, suggesting that people interpret iris texture

in a quite different way than iris biometric systems. As a side note, analogous

results have been also reported in (Hollingsworth et al., 2011), where it has been

shown that humans are also able to correctly match the irises of identical twins,

while these latter are as different as those of unrelated people for a standard iris

biometric recognition algorithm.

An investigation about the similarity of left and right ears of the same sub-

jects has been conducted in (Claes et al., 2015). Tests relying on features ex-

tracted from 3D samples, and performed by comparing left ears against right

ones, with instances from the same subject generating genuine scores and sam-

ples from different subjects resulting in impostor attempts, have shown that it

is possible to achieve an equal error rate (EER) of 11%. This result, obtained by

manually selecting specific substructures of the ear out of the available feature

space, shows that differences among individuals are larger that those between

left and right instances of the same subject.

A biometric recognition framework has been also exploited in (Xu et al.,

2015) to infer about the similarity of left and right palmprints. Also in this

case, each left palmprint, in the considered database, has been compared against

every right palmprint of each subject, with the computed scores considered as

genuine if originated from samples of the same person, and impostor otherwise.

EERs at 24.22% and 35.82% have been obtained on two distinct dataset, show-

ing that also the left and right palmprints of the same person generally have

higher similarity than those from different subjects. In (Kumar et al., 2016),

experiments similar to the ones in (Xu et al., 2015) have been carried out, yet

exploiting deep learning strategies, in addition to state-of-the-art methods rely-

ing on hand-crafted features, to derive the palmprint representations employed

in the performed tests. Training a network by assigning the same label to left
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and right palmprints of the same user, an EER equal to 9.25% has been obtained

comparing samples of different hands of the same individual, and samples from

different persons. The achieved result has shown the superiority of deep learning

strategies, over hand-crafted approaches, in finding similarities between left and

right biometric instances of the same subject. It has yet to be remarked that a

closed-set testing procedure, where tests are carried out over the same subjects

employed for network training, has been adopted in (Kumar et al., 2016) to

evaluate the effectiveness of the employed convolutional neural network (CNN)

as feature extractor, therefore affecting the reliability and generalizability of the

obtained results.

Tests on retinas have been recently conducted in (Biswas et al., 2019). A

CNN trained only for dimensionality reduction has been there employed as

feature extraction, and the scores generated by comparing templates associated

to the two retinas of the same person have been compared against those obtained

when comparing samples from different users. The observed behavior testifies

that also the left and right retinas of a person have more similarity than the

retinas from two distinct persons. As in (Bowyer et al., 2010), subjective tests

relying on the judgement of human volunteers about the similarity of two retinas

have been also performed. Also in this case, humans seem to possess an higher

capability than currently available algorithms to detect similarities between left

and right traits of the same person.

As mentioned in Section 1, the similarity of left and right finger-vein patterns

has been preliminarily investigated in our previous work (Piciucco et al., 2019),

where we have observed that, although corresponding fingers from different

hands of the same subject show more resemblance than those from different

persons, the similarities found through hand-crafted features are not significant

enough to be exploited in a biometric recognition systems. In fact, EERs higher

than 30% have been estimated in (Piciucco et al., 2019) using left and right

finger-vein patterns as genuine comparisons.

Therefore, the literature suggests that hand-crafted features, despite allow-

ing to perform standard biometric recognition, may not be suited for capturing
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Figure 1: Light absorption (left) and therapeutic (right) windows

the similarities between left and right traits of the same individual, even if these

similarities actually exist and are evident to a human observer. Conversely,

leveraging on deep learning strategies could instead be beneficial to emulate hu-

man learning and discriminating capabilities, specifically looking for the desired

similarities, as already shown for palmprints in (Kumar et al., 2016).

Within this framework, in this paper, we expand our previous research (Pi-

ciucco et al., 2019) not only by considering palm- and dorsal-vein patterns, in

addition to finger-veins, but also employing a CNN-based approach to look for

similarities between the vein patterns of the right and left hands of a subject,

instead of resorting to hand-crafted features, in order to better mimic the hu-

man evaluation capability. The following sections give more details regarding

the considered biometric traits and the exploited processing strategies.

3. Hand Vein Biometric Recognition

In the late 80s, vascular patterns have been introduced as a potential bio-

metric identifier (Rice, 1987), exploiting the properties of near-infrared (NIR)

light to pass through human skin, and to be absorbed by blood haemoglobin in

vein vessels. These characteristics are described by the light absorption window

and the therapeutic window depicted in Figure 1:

• light absorption window : the wavelengths interval [700, 900] nm where the

oxygenated and the deoxygeneted haemoglobin reaches its light absorption
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peak between (DeoxyHb: 760nm; OxyHb: 900nm);

• therapeutic window : the wavelengths interval, [650, 1350] nm, where the

light has its maximum depth of penetration in the human tissue.

As a consequence, the NIR light absorption capability of haemoglobin makes

the blood vessels appearing darker while the remaining parts of the body reflect

the light in specific NIR wavelength windows. Thus, vascular patterns can be

acquired using a NIR camera, equipped with a NIR illuminator working either

in the transmission or the reflection modality.

A brief overview about the state of the art on biometric recognition systems

exploiting finger, hand, and dorsal vein patterns, is reported in the following,

and a summary of the main features of the systems operating in the verification

modality is given in Table 1. A deeper evaluation of the state of the art on vein

biometric recognition has been recently provided in (Uhl et al., 2020).

3.1. Traditional Approaches

The methods employed to process vein patterns in biometric recognition sys-

tems are typically distinguished into profile-based and feature-based approaches.

The former category is focused on the extraction of the cross-sectional contour

of the veins in an image. For instance, the maximum curvature approach (Miura

et al., 2007) leads to robust performance on different finger-vein databases. In-

stead, feature-based approaches rely on the assumption that the vein regions

areas are darker compared to remaining parts of the hand, and line-like shapes

are interpreted as vein patterns in the contour of vein images. For example,

methods extracting minutiae features on the line patterns, and using the Haus-

dorff distance in spatial domain, e.g. (Wang et al., 2008), to measure their

similarities, belong to the latter category.

In more detail, early attempts to use palm vein biometrics relied on feature-

based approaches on a dataset, namely the PolyU-P palm vein database, com-

posed by RGB images in both the visible and NIR sub-bands (Zhang et al.,

2009). Both palm print features from the RGB sub-bands, and palm vein fea-

tures from the NIR sub-band, have been extracted using texture-based coding
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Reference
Vein Database Proposed System EER

Pattern Name # Users Comment Feature Extraction Matching (in %)

(Wang et al., 2020)

Dorsal
Finger
Palm
Palm

OWN
FV-USM

PUT
PolyU-P

200
123
50
200

Data from distinct sessions are separately used for
training and testing, yet the same subjects are
considered in the two phases (closed-set scenario).

Multi-weighted
Co-occurence

Descriptor Encoding

Large Margin
Distribution

Machine

0.015
0.307
0.615
0.017

(Kuzu et al., 2020a)

Finger
Finger
Palm
Palm

Dorsal

SDUMLA
PolyU-F
PolyU-P
CASIA

Bosphorus

636
312
500
200
100

Data from distinct sessions are separately used for
training and testing, with different subjects
considered in the two phases (open-set scenario).

Modified Densenet-161
with AAMP

Channel-wise
Euclidian Distance

0.02
1.87
0.00
1.12
2.58

(Ahmad et al., 2019) Palm

PolyU-P
PUT

VERA
OWN

250
50
110
50

Template generation performed using 4 samples
from each genuine subject, exploiting cancelable
transformation to ensure preserving the privacy.

ROI Enhancement
Followed by Wave
Atom Transform

Normalized
Hamming Distance

1.98
0.00
3.05
1.49

(Wu et al., 2019) Palm
CASIA
OWN

100
250

It is not specified whether data taken during the
same session are used for training and testing.

Haar-Wavelet Decomposition
and Partial Least Square

Euclidian Distance
0.029
0.405

(Qin et al., 2019) Palm
PolyU-P
CASIA

250
100

Data from distinct sessions are separately used for
training and testing, yet the same subjects are
considered in the two phases (closed-set scenario).

Iterative Deep
Belief Network

Hamming Distance
0.01
0.33

(Yang et al., 2019) Finger
THU-FVFDT2

SDUMLA
610
106

THU-FVFDT2 splitted into disjoint sets for training,
validation, and test. SDUMLA used for verification.

Generative Adverserial Networks
for Finger Vein (FV-GAN)

Cross Correlation on
Binarized Templates

1.12
0.94

(Thapar et al., 2019) Palm
PolyU-P
CASIA

IITI

250
100
185

Data divided in two sets having the same size,
the first half for training and the other for testing.

U-Net like Decoder-Encoder
CNN Architecture

Siamese Matching
Network

0.66
3.71
0.93

(Song et al., 2019) Finger
SDUMLA
PolyU-F

106
156

Data divided in two sets having the same size.
Tests on PolyU-F conducted using same-session
data for training and testing.

Densenet-161 on
Composite Finger Images

Shift Matching and
Minimum Rule

2.35
0.33

(Zhong et al., 2019)
Palm

Dorsal
Multi

PolyU-P
NGX

Private

250
420
57

Three dorsal vein dataset is combined and named
as NGX (NCUT + GPDS + XJTU). Multi-vein
dataset is composed of palm and dorsal vein

Deep Hashing Network
Biometric Graph Matching

SVM
Hamming Distance

0.01
3.91
0.00

(Pan et al., 2019)

Palm
Palm
Palm

Dorsal

PolyU-P
PUT

Private
Private

250
50
224
224

The private database is acquired as 2 sessions,
each includes 5 images.

VGG-16 combined with
LMP-PSP and PCA

SVM

0.04
0.58
1.74
1.28

(Wang et al., 2018)
Palm

Dorsal
PolyU-P

OWN
250
200

It is not specified whether data taken during the
same session are used for training and testing.

Spatial Pyramid Pooling
on pre-trained VGG16

SVM Classifier
0.07
0.06

(Fang et al., 2018) Finger
MMCBNU
SDUMLA

100
106

Data from the same subjects are considered
for testing and training (closed-set scenario).

2-Channel Network, 2-Stream
Network, and Selective Network

SVM Classifier
with Linear Kernel

0.10
0.47

(Yang et al., 2018) Finger
SDUMLA
PolyU-F

106
105

Tests conducted in same- and different-session
conditions for training and testing (results
from the latter scenario here reported).

Anatomy Structure Analysis
based Vein Extraction (ASAVE)

Elastic Matching
1.39
2.91

(Jalilian & Uhl, 2018) Finger
SDUMLA
UTFVP

106
60

Tests conducted dividing each dataset into
two disjoint subsets. Cross-database
conditions also considered.

U-Net, RefineNet, SegNet
Cross Correlation on
Binarized Templates

2.63
0.64

(Xie & Kumar, 2017) Finger PolyU-F 156 Training and testing conducted on distinct users.
Modified VGG-16 with

Supervised Discrete Hashing
Hamming Distance 9.77

(Kauba et al., 2016) Finger UTFVP 60
Parameter tuning performed using 10% of available
data, the rest employed to estimate EER.

Feature Level Fusion
Cross Correlation on
Binarized Templates

0.19

(Das et al., 2014) Wrist PUT 50
Data from the same sessions and the same subjects
used for training and testing (closed-set scenario).

Discrete Meyer Wavelet
and Local Binary Patterns

SVM Classifier 0.79

(Kabaciński & Kowalski, 2011) Wrist PUT 50 Training and testing on data from different sessions.
Discrete Fourer Transform

and Gradient-based Segmentation
Cross Correlation on
Binarized Templates

2.19

(Yuksel et al., 2011) Dorsal Bosphorus 100 Different environmental scenarios considered in tests. Fusion of LEM, NMF and ICA
Hausdorff Distance,

Cosine Distance
2.25

(Kumar & Zhou, 2011) Finger PolyU-F 156
Tests conducted in same- and different-session
conditions for training and testing.

Radon Transform and
Gabor Filters

XOR-based
Similarity Score

A: 2.45
B: 0.08

(Zhou & Kumar, 2011) Palm
PolyU-P
CASIA

250
100

Training and testing on data from different sessions.
Neighborhood Matching

Radon Transform
Hamming Distance

0.21
1.37

(Zhang et al., 2009) Palm PolyU-P 250 Training and testing on data from same sessions.
Texture based Coding

and Gabor Filters
Hamming Distance 0.01

Table 1: Vein based recognition systems: State-of-the-art

algorithm, and six Gabor filters along with different directions. An Equal Error

Rate (EER) at 0.012% has been obtained after fusing the scores obtained from

each channel.

In (Zhou & Kumar, 2011) the templates have been generated using a neigh-

bourhood Radon transform, and a modified Hamming distance has been used for

comparison. Tests performed on the PolyU-P dataset have resulted in EERs at

0.004%and 0.21% when respectively using either six or one enrollment samples

per user. EERs at 1.37% and 0.51% have been obtained when using either one

or three enrollment samples per user, respectively on images from the CASIA

dataset (Hao et al., 2008). Experiments conducted on the PolyU-F finger vein

dataset (Zhang et al., 2009) have provided an EER equal to 0.08% by fusing in-

dex and middle finger features (Kumar & Zhou, 2011). It is also there remarked
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that a bias in the estimated performance can be introduced when comparing

vein samples taken during the same session, with the consequent need, whenever

possible, to compare vein samples captured in different occasions.

Tests on the SDUMLA (Yin et al., 2011) and PolyU-F have produced EERs

at 1.39% and 0.38%, respectively, by using anatomy-structure analysis-based

vein extraction (ASAVE) and elastic matching (Yang et al., 2018). On the

UTFVP finger-vein database, an EER at 0.19% has been also obtained resorting

to feature level fusion (Ton & Veldhuis, 2013).

Dorsal hand veins have been analyzed using a score level fusion approach re-

lying on features extracted by line-edge map, non-negative matrix factorization,

and independent component analysis (Yuksel et al., 2011). The reported EERs,

on the Bosphorus dataset, for the naive tests implementing one-sample enroll-

ment, and for tests implementing the enrollment stage with eight samples, are

8.18% and 2.25% respectively. It is worth remarking that, in the aforementioned

studies, real-life conditions have been implemented in order to infer about the

potential performance degradation.

3.2. Deep Learning-based Approaches

Recent progresses in deep learning are positively affecting the biometric field,

among the others. The approach in (Radzi et al., 2016) is one the pioneering

methods performing finger-vein recognition resorting to Convolutional Neural

Networks (CNNs). Specifically, the employed architecture is a 4-layer CNN fol-

lowed by a subsampling layer, while tests have been conducted on data recorded

from 50 subjects. After this initial effort, there has been a flourishing of contri-

butions applying deep learning to vein-based recognition systems.

Lightweight CNNs have also been exploited to extract templates from finger-

vein samples taken from the MMCBNU (Lu et al., 2013) and the SDUMLA

datasets (Fang et al., 2018). A selective network able to automatically choose

one of them, depending on the features intra-class variations, has been built,

with a support vector machine (SVM) having linear kernel employed for match-

ing. Although promising results have been there reported, with EERs at 0.10%
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on MMCBNU and 0.47% on SDUMLA, these results are biased, being obtained

considering the same subjects during both training and testing, besides achiev-

ing these rates computing scores as averages over 5 comparisons.

Tests on PolyU and SDUMLA finger-vein datasets have been conducted also

using the Densenet-161 architecture (Song et al., 2019). The authors have ini-

tially built composite samples from vein images by shifting each of them into

various directions, and extracted features by using Densenet-161 thereafter. Ex-

periments have been performed dividing the available data into two disjoint sets,

with EERs obtained using a 2-fold cross-validation equal to 0.33% and 2.35% on

PolyU-F and SDUMLA datasets, respectively. It has yet to be remarked that

tests have been done considering only the first session of PolyU-F, therefore

providing results which should be considered biased.

Different deep image segmentation algorithms, relying on U-Net, RefineNet,

and SegNet frameworks, have been investigated in (Jalilian & Uhl, 2018), us-

ing human-annotated pixel-labels as ground-truth to create binary templates.

EERs at 2.63% and 0.64% have been respectively reported on the SDUMLA and

UTFVP finger-vein datasets. Features co-occurrence among different convolu-

tional filters has been considered in (Wang et al., 2020). To test the robustness

of their method, the authors have considered different vein modalities, namely

dorsal-, palm-, and finger-vein. An innovative approach to perform on-the-fly

finger vein acquisition, along with a novel deep learning architecture using both

long short-term memory networks and convolutional neural networks, has been

recently proposed (Kuzu et al., 2020b).

Also generative adversarial networks (GANs) have been used to analyze

finger-vein patterns (Yang et al., 2019). Although GANs originally represent

generative models for data synthesis, they have been employed to generate

discriminative templates from vein patterns (Yang et al., 2019). The THU-

FVFDT2 (Yang et al., 2009) and SDUMLA datasets, containing multiple ses-

sions of finger-vein data from 610 and 106 unique subjects respectively, have

been used for testing purposes. Specifically, the former dataset has been di-

vided into distinct subsets for training, validation, and testing purposes, while
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the latter has been used only to re-validate the proposed system. Recognition

rates with EERs at 1.12% and 0.94% have been respectively reached on the two

datasets.

4. Employed CNN-based Recognition System

In this Section, the network topology employed for our analysis is described,

along with the network initialization and optimization.

4.1. Network Topology

In this study we exploit a modified Densenet-161 architecture (Huang et al.,

2017), where the last layer is replaced with a Custom Embedder, as detailed

in Table 2. To elaborate on the architecture, 224 × 224 × Nc input images

are fed into the model, being Nc the number of available channels. The first

convolution layer comprises 96 convolutional filters having size 7× 7 and stride

2. A 3 × 3 maximum pooling with stride 2 is then used. Dense blocks and

transition layers follow each other one by one prior to the Custom Embedder.

Here, a dense block is composed of a sub-block of batch normalization (BN) -

ReLU - 1 × 1 convolution, which is called as bottleneck layer, and a sub-block

of BN - ReLU - 3 × 3 convolution with zero paddings on each side of input by

one pixel. On the other hand, a transition layer connects two consecutive dense

blocks by BN - ReLU - 1 × 1 Convolution and 2 × 2 average pooling having

stride 2. The output of last dense block is fed into the Feature Embedder which

is composed of following units: i) batch-normalization of input (vein) features

followed by a 50% dropout regularisation employed to reduce overfitting, ii)

one fully-connected (FC) layer comprising batch-normalization, consisting of

d = 1024 neurons, being d the feature embedding size. The last FC layer of the

network in Table 2 produces as output a vector with size U , depending on the

total number of unique identities available in the considered training dataset.

In order to generate discriminative templates, following the latest achieve-

ments in CNN-based biometric recognition, the Additive Angular Margin Penalty
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Layers Input Output
Convolution 7× 7 conv (str.2) 224× 224× 1 112× 112× 96

Pooling 3× 3 max pool (str.2) 112× 112× 96 56× 56× 96

Dense Block 1

[
1× 1 conv
3× 3 conv

]
× 6 56× 56× 96 56× 56× 384

Transition 1
1× 1 conv

56× 56× 384 28× 28× 192
2× 2 avg pool (str.2)

Dense Block 2

[
1× 1 conv
3× 3 conv

]
×12 28× 28× 192 28× 28× 768

Transition 2
1× 1 conv

28× 28× 768 14× 14× 384
2× 2 avg pool (str.2)

Dense Block 3

[
1× 1 conv
3× 3 conv

]
×36 14× 14× 384 14× 14× 2112

Transition 3
1× 1 conv

14× 14× 2112 7× 7× 1056
2× 2 avg pool (str.2)

Dense Block 4

[
1× 1 conv
3× 3 conv

]
×24 7× 7× 1056 7× 7× 2208

Custom
Embedder

7× 7 avg pool
7× 7× 2208 1× 2208BN

50% dropout
FC layer

1× 2208 1× 1024
BN

Classifier output layer 1× 1024 1× U

Table 2: The applied custom Densenet-161-based architecture

(AAMP) (Deng et al., 2019) is adopted as loss function in the training phase

of the employed network. It has been in fact shown that such approach guar-

antees an increase in the Euclidian separation of the produced features, thus

reducing intra-class variances while increasing inter-class distances (Deng et al.,

2019). The AAMP loss function is therefore recommended to train networks

to be employed as feature extractors in biometric systems working in the ver-

ification modality, and evaluated according to open-set procedures, in which

the subjects exploited for testing purposes and different from those considered

during training.

As illustrated in Figure 2, vein features of the enrollment and the query

inputs, created by the CNN Feature Embedder, are compared during the testing

phase by using Euclidian Distance, after their L2 normalization2.

2The source code of the employed architectures is available at https://github.com/ridva

nsalihkuzu/vein-biometrics
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Figure 2: Visual explanation of the training, validation, and testing procedures in the per-
formed tests.

4.2. Network Initialization and Optimization

The adopted CNN is trained for classification purposes, with the features

produced by the proposed Custom Embedder taken as generated templates.

The loss function adopted for training is the cross-entropy (CE), while back-

propagation is performed resorting to stochastic gradient descent (SGD), and

using i) 32 samples in each batch, ii) 0.01 as initial learning rate, reduced tenfold

after every 30 epochs, iii) a 0.9 momentum, iv) 120 training epochs at most,

with training stopped in case of minimization of the validation loss.

While searching the best hyper-parameters of AAMP, the penalty margin is

selected within the range m ∈ [0.3, 0.7], while the scale parameter determined

within the interval s ∈ [16, 96].

For the initialization of the Densenet-161 framework, the weights of the

Imagenet pre-trained model are used. Moreover, the custom layers defined in

the modified Densenet-161 (seen in Table 2) are initialized with i) unit weight

initialization for BN layers, ii) Glorot uniform initialization for FC layers.

5. Experimental analysis and discussion

Our analysis aims at verifying whether vein patterns of one hand of a subject

have a greater amount of similarity with the analogous traits of the other hand
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Figure 3: From left to right for one single subject: left hand - first instance, left hand - second
instance, right hand.

of the same subject, rather than with the analogous traits of the same hand

of a different person. To this aim, several kinds of vein patterns, namely fin-

ger, palm, and dorsal hand veins, have been considered in the performed tests.

Specifically, as summarized in Table 3, we have estimated different score dis-

tributions according to the following scenarios, with some examples graphically

depicted in Figure 3:

• genuine scores are computed comparing vein patterns extracted from the

same finger of the same hand of the same subject. As an example, given

a certain subject, comparisons between distinct instances of patterns be-

longing to the same right index finger are performed. For palm and dorsal

vein recognition, genuine scores are computed comparing vein patterns

from the same hand of the same individual;

• impostor scores are computed, for finger vein recognition, by comparing

Scenario Subjects Hands Fingers Scores
1 same same same genuine
2 different same same impostor
3 same different same genuine CH
4 different different same impostor CH

Table 3: Conditions considered to compute the score distributions.
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vein patterns extracted from the same finger of the same hand of differ-

ent subjects. As an example, veins from the right index of a person are

compared against those of a different person’s right index. For palm and

dorsal vein recognition, impostor scores are computed comparing veins

from the same hand of different individuals;

• genuine cross-hand (CH) scores are computed, for finger vein recognition

and given a certain subject, comparing patterns from corresponding finger

from different hands. As an example, veins in the right index are compared

against those in the left index of the same person. For palm and dorsal

vein recognition, genuine CH scores are computed comparing patterns

from different hands of the same subject;

• impostor CH scores are computed, for finger vein recognition, by com-

paring vein patterns extracted from the same finger of different hands of

different subjects. As an example, veins in the right index of a person

are compared against those of a different person’s left index. For palm

and dorsal vein recognition, impostor CH scores are computed comparing

veins from different hands of different individuals.

The databases employed to estimate the aforementioned score distributions

are detailed in Section 5.1. The adopted experimental protocols are then pre-

sented in Section 5.2. Vein patterns cross-hand similarity is finally discussed in

Section 5.3.

5.1. Employed Databases

In order to provide a comprehensive analysis regarding cross-hand vein pat-

tern similarity, tests have been performed on finger, palm, and dorsal charac-

teristics. To this aim, we have exploited finger vein samples taken from the

SDUMLA dataset (Yin et al., 2011), palm vein data from the PolyU-P multi-

spectral dataset (Zhang et al., 2009), dorsal hand vein images from the Bospho-

rus dataset (Yuksel et al., 2011), and the multi-exposure finger vein dataset

captured at Roma Tre University, namely R3VEIN (Kuzu et al., 2020b). For
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Benchmark
Database

Vein
Modality

Database Statistics
Capturing
Conditions

Capturing
Parts

SDUMLA (Yin et al., 2011) Finger

# of Subjects 106
grayscale

single
channel

3 fingers from
left and right

hands

# of Classes 636
# of Sessions 1

Samples per Session 6
Total Samples 3.816

PolyU-P (Zhang et al., 2009) Palm

# of Subjects 250
4

different
spectral
channels

left and right
hand palms

# of Classes 500
# of Sessions 2

Samples per Session 6
Total Samples 24.000

Bosphorus (Yuksel et al., 2011) Dorsal

# of Subjects 100
4

different
environmental

conditions

left and right
dorsal-hand

# of Classes 200
# of Sessions 1

Samples per Session 3
Total Samples 1.500

R3VEIN (Kuzu et al., 2020b) Finger

# of Subjects 200
4 different
channel for

varying
exposure rates

4-finger images
(except thumb)
from left and

right hand

# of Classes 400
# of Sessions 10

Samples per Session 9
Total Samples 144.000

Table 4: Overview of vein databases applied in this study

PolyU-P dataset, only NIR channel images are considered. Similarly, when us-

ing the R3VEIN dataset in our experiments, tone-mapped high dynamic range

(HDR) samples are generated from 4 images taken at different exposure rates

(Kuzu et al., 2020b). The main properties of the considered datasets are sum-

marized in Table 4. All the images of the considered datasets are re-sized into

a 224× 224 format, and normalized in order to possess zero mean and unitary

variance, before using them as input for the considered networks.

5.2. Experimental Framework

Two different CNN training strategies are employed on the considered datasets:

• Training Strategy-1: All different hand and fingers are treated as separate

classes during training and validation;

• Training Strategy-2: different hands of the same user, as well as corre-

sponding fingers from different hands of the same user, are considered as

belonging to the same classes during network training and validation. This

training strategy is carried out to explicitly trying to extract discrimina-

tive features shared by the vein structures in distinct hands of the same

individual.
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Once the employed network has been trained according to one of the afore-

mentioned strategies, similarity scores belonging to the categories mentioned in

Table 3 have been computed over samples considered during the test phases.

Once such distributions have been generated, the false rejection rate (FRR) and

the false acceptance rate (FAR) associated to the following scenarios have been

estimated:

• Standard comparisons: as commonly done in biometric recognition testing,

each finger or each hand of a subject is considered as a class. FRR and FAR

are therefore computed from the genuine and impostor scores previously

defined;

• Cross-comparisons: the possibility of interchangeably employing different

hands to be recognized, on the basis of the extracted vein patterns, is

analyzed by computing the FRR and FAR depending on genuine CH and

impostor scores, or considering genuine CH and impostor CH scores.

While conducting the experiments, the considered datasets have been di-

vided into two subsets having the same size, and separately uses for training

and testing, with 20% of the data selected for training reserved for validation

purposes. An open-set scenario has been considered in all the performed tests,

taking half of the available classes for training, and leaving the remaining half

for testing. When considering databases with multiple sessions, data from dis-

tinct sessions have been used for enrollment and verification, with the aim of

avoiding any bias effect.

Experiments have been conducted using a dual-processor system equipped

with 128Gb RAM, four NVIDIATM Tesla V100 graphic cards, running under

Ubuntu 18.04 LTE OS and using PyTorch 1.4.0.

5.3. Similarity of Cross-Hand Templates

The computed score distributions are shown in Figure 4. Considering the

values obtained when employing Training Strategy-1, it can be observed that

genuine CH scores are typically lower than those of impostor and impostor CH
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(a) SDUMLA, Training Strategy-1 (b) SDUMLA, Training Strategy-2

(c) PolyU-P, Training Strategy-1 (d) PolyU-P, Training Strategy-2

(e) Bosphorus, Training Strategy-1 (f) Bosphorus, Training Strategy-2

(g) R3VEIN, Training Strategy-1 (h) R3VEIN, Training Strategy-2

Figure 4: Genuine, Genuine-CH, Impostor, and Impostor CH score distributions for experi-
ments on the considered databases, using Training Strategy-1 and Training Strategy-2.
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Databases
Training Strategy-1 Training Strategy-2

Standard
Comparison

Cross
Comparison

Standard
Comparison

Cross
Comparison

SDUMLA 0.02% 22.1% 0.23% 10.9%
PolyU-P 0.22% 38.5% 0.86% 25.3%
Bosphorus 2.33% 30.8% 2.79% 23.9%
R3VEIN 0.57% 17.6% 1.19% 4.46%

Table 5: EERs (in %) for the performed tests based on different training strategies

distributions. This finding already corroborates the hypothesis that left and

right hand vein patterns of the same persons are more similar than those of

unrelated persons. This aspect is particularly evident for finger-vein patterns,

as shown by the results on SDUMLA and R3VEIN databases.

Furthermore, the scores obtained using Training Strategy-2 are characterized

by a far larger separation between genuine CH and impostor scores, testifying

the effectiveness of the employed training procedure in finding common charac-

teristics in left and right hand vein patterns, while preserving their inter-subject

discriminability.

It can also be noticed that impostor and impostor CH distributions are al-

most overlapped, for all the considered databases and for both the employed

training strategies. Minimal differences can be seen only for PolyU-P and

Bosphorus databases, when Training-Strategy-1 is employed. Using Training-

Strategy-2, specifically designed to look for similarities in left and right hands,

even such slight differences disappear. This behavior means that vein patterns

of different persons are so different that it does not matter which hand is used by

an attacker for an impostor attempt (given that the system compares mirrored

images, in case left and right hands are compared).

The EERs achieved using the recognition strategy detailed in Section 4,

for each of the test conditions, are reported in Table 5. The results obtained

considering the Training Strategy-1 scenario show that, when fingers, palm, and

dorsal veins from left and right hands are considered as separate classes during

training, the recognition performance are quite poor if a palm or a finger is

used for enrollment, and the corresponding ones from the other hand are then

used for recognition. This can be clearly seen by comparing the recognition
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rates achieved in the standard comparison and cross-comparison test scenarios:

considering for instance the SDUMLA dataset, while a low EER at 0.02% is

achieved in the former case, a much higher EER at 22.1% is instead obtained

when using vein patterns of different hands as genuine samples.

On the other hand, the results obtained exploiting the Training Strategy-2

scenario show that, when training is performed considering finger, palm, and

dorsal veins from left and right hands as belonging to the same class, the recog-

nition performance achieved computing genuine scores from comparisons of vein

patterns from different hands is significantly improved, with respect to the pre-

vious case. This means that, under Training Strategy-2, the employed CNN

is actually able to find discriminative characteristics shared between the cross

pairs of vein patterns. The receiver operating Characteristic (ROC) curves com-

puted for the considered database, for both the employed training strategies,

are depicted in Figure 5.

In more detail, the recognition rates obtained for standard comparisons

when considering the Training Strategy-1 scenario are a bit better than the

ones achieved when adopting the Training Strategy-2, although these latter are

still good for recognition purposes. Nonetheless, the Training Strategy-2 sce-

nario allows extracting characteristics which could allow to perform a successful

matching between vein patters coming from different hands of the same per-

son. It is worth remarking that such possibility can be considered admissible

only for finger vein patterns taken from the SDUMLA and R3VEIN dataset,

while it is much less practically feasible for vein patterns from the PolyU-P and

Bosphorus databases, for which EERs greater than 20% have been achieved

when using samples from different hands to compute genuine scores. In more

detail, the largest extent of similarities is found when considering samples from

the R3VEIN dataset, since the images there collected contain vein patters from

four fingers, with therefore much more information with respect to the samples

from the SDUMLA dataset. As seen also from the ROC curves in Fig. 5(d),

and from the distributions in Fig. 4(h), the scores obtained when performing

cross-hand comparisons are quite close to those obtained considering standard
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(a) SDUMLA dataset (b) PolyU-P dataset

(c) Bosphorus dataset (d) R3VEIN dataset

Figure 5: ROC curves obtained on SDUMLA, PolyU-P, Bosphorus, and R3VEIN datasets,
for both the employed training strategies.

genuine comparisons, under Training Strategy-2.

A further understanding of the underlying processes can be obtained by

checking the activation patterns on vein images obtained when training the

employed CNN according to the two adopted training strategies. To this aim,

we have computed the gradient-weighted class activation mapping (grad-CAM)

(Selvaraju et al., 2017) on the available vein samples, obtaining images such

as those shown as examples in Figure 6. In more detail, the upper parts of

Figures 6(a) and 6(b) show the results obtained when the vein patterns from

different hands are considered as separate classes during training. In this case,

the heatmap colour distributions contain more dark-red pixels for both left and

right hand samples. This means that the regions including veins give strong
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Figure 6: Grad-CAM activation heatmaps on SDUMLA and R3VEIN database samples: the
left and right fingers of the same person are illustrated on the left and right sides of each
dataset accordingly; the upper heatmaps for the Training Strategy-1, while the bottom ones
for the Training Strategy-2.

contribution to the activation of CNN layers to be distinguished as separate

classes. Nevertheless, in case of Training Strategy-2, these contributions to the

activation of CNN layers fade, as shown in the lower parts of Figure 6(a) and

6(b). This means that taking cross- hand/finger samples as belonging to the

same class slightly weakens the separability of classes based on vein patterns.

6. Conclusions

In this study we have investigated, within a biometric recognition framework,

the similarity of vein structures across different finger, palm, and dorsal regions.

Leveraging on literature studies carrying out similar analysis on several biomet-

ric traits, we have resorted to deep learning strategies to better emulate human

learning and discriminating capabilities. The results obtained when adopting a

standard network training strategy, that is, considering vein patterns from each

finger, palm, or dorsum as an independent class, indicate that significant similar-

ities between corresponding vein patterns of different hands exist. Nonetheless,

the performance achievable performing recognition using the trait belonging to

a hand other than the one employed during enrollment is quite poor.

Conversely, a notable performance improvement has been obtained when the
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adopted training strategy uses vein patterns from fingers, palms, and dorsa of

left and right hands as belonging to the same class, and genuine scores are com-

puted by comparing vein patterns from different hands. The obtained findings

are similar to those given in (Claes et al., 2015) for ear and in (Kumar et al.,

2016) for palmprint: in both papers the similarities found in left and right bio-

metric traits allow to compute an EER in the order of 10%, analogous to the

one we report for finger-vein data from SDUMLA. An even lower EER has been

achieved in our tests over the R3VEIN dataset, which comprises images with

four fingers altogether.

A lower amount of similarity has been achieved for palm-vein data from

PolyU-P, and for dorsum-vein samples from Bosphorus, with EERs respectively

at 25.3% and 23.9%. Therefore, further studies could be beneficial to evaluate

whether different approaches would detect higher similarities, while maintain-

ing inter-subject differences, for palm- and dorsal-vein patterns of left and right

hands. For instance, the use of deep generative models such as generative adver-

sarial networks (GAN) or autoencoders could be exploited to this aim. These

latter could be in fact employed to evaluate whether the vein pattern represen-

tation of one hand could be retrieved from the features extracted from the other

one, while preserving discriminative capabilities.
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