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Abstract
In the relatively recent past, the analysis of keystroke dynamics for biometric recognition
purposes has intrigued researchers, since practical evidences have shown differences in
the typing behaviours of distinct subjects. This area of research has become even more
appealing since the emergence and evolution of mobile smartphones, given their
pervasiveness and intensive use in real‐life applications. In addition, unlike hard key-
boards used with computers, mobile smartphones offer the possibility of exploiting
embedded sensors to augment the information acquired when typing on their soft
keyboards. This study discusses the state of the art of keystroke‐dynamics‐based auto-
matic recognition system, exclusively when dealing with mobile devices, for both veri-
fication and identification purposes. In more details, the databases employed, the features
selected, the methodologies implemented, and the performance achieved through the
technological advances introduced in the last years, are here overviewed.

1 | INTRODUCTION

In the last decades, biometric technology has emerged, at an
increasing rate, as an enabling solution for automatic people
recognition, thanks to several intrinsic advantages it offers
over conventional approaches. In fact, differently from tradi-
tional recognition methods, which exploit either what a person
knows, like a password, or what a person owns, such a token,
biometric recognition systems rely on who a person is, what a
person does, or how a person answers to specific external
stimuli [1]. In layman terms, biometric recognition systems
perform pattern recognition tasks, in the form of either veri-
fication or identification, leveraging on features extracted from
either physiological characteristics such as fingerprint, iris, face,
and vein patterns, behavioural traits like voice, signature, gait,
and keystroke, or even cognitive properties derived from
responses of the nervous system such as those collected
through electroencephalography or electrocardiography, to cite
some examples. With respect to conventional approaches for
automatic people recognition relying on passwords or tokens,
biometric recognition systems exploit identifiers that, to
some extent, cannot be lost, forgotten, stolen, copied, or
forged [2]. Whereas in the past biometric recognition has been
mostly performed on desktop devices for commercial

applications [3, 4], in recent years we are witnessing an
increasing use of this technology on handheld devices [5].

Mobile communication is, in fact, widespread, as shown in
Figure 1 where the number of mobile subscriptions from 1993
to 2019 is reported. As can be seen, the current number ex-
ceeds the world population. Among the reasons for such
astonishing growth from the early years of mobile communi-
cations to the present day, there is the fact that a huge number
of people around the world use their cellular subscriptions to
access the Internet, especially since the introduction of
smartphones. Figure 2 shows that the number of worldwide
smartphone users has raised at a very high rate, from 2.5
billion in 2016 to an expected 3.8 billion in 2021, out of an
overall 5.8 billion users of mobile devices. A further growth,
up to five billion smartphone users, is expected by 2025 [6].
Figure 3 further details the expected behaviour of worldwide
mobile internet penetration, going beyond 60% by 2025, while
remaining below 50% only in Sub‐Saharan Africa.

Thanks to their portability and ease of use in comparison
to bulky desktop systems, and also to the availability of fast
wireless internet connections, more and more complex online
tasks are nowadays performed through mobile devices, such as
online banking, e‐commerce, and so forth. As shown in
Figure 4, the share of internet users employing mobile online
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payment services is in fact above 30% in most regions of the
world.

Performing such tasks typically requires the provision,
through the employed mobile devices, of sensitive and

valuable data, such as personal identifiers, passwords, bank
accounts, credit card numbers, booking orders, and so forth.
Consequently, severe issues regarding the security and pri-
vacy of such data arise. In fact, there is either the possibility

F I GURE 1 ITU (5 November 2019). Number of mobile (cellular) subscriptions worldwide from 1993 to 2019 (in millions; Graph). In Statista. Retrieved 20
May 2020, from https://www.statista.com/statistics/262950/global‐mobile‐subscriptions‐since‐1993/. ITU, International telecommunication union

F I GURE 2 Newzoo (17 September 2019). Number of smartphone users worldwide from 2016 to 2021 (in billions; Graph). In Statista. Retrieved 1 July
2020, from https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
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that an unauthorized attacker could get access to them, or
the possibility that people sharing our personal space, like
children, could get access to unsuitable content [7]. The
demand for secure methods to be used on mobile devices
access control is therefore very high. For this reason, more
and more smartphones embed biometric sensors to perform
fingerprint‐, face‐, or iris‐based recognition. At the same
time, research on additional biometric recognition methods
for mobile devices is also being carried out [8]. Among the
performed activities, notable interest is devoted to the
development of solutions which would not require the us-
age of any dedicated hardware, to contain the production
costs.

Within this scenario, resorting to keystroke dynamics (KD)
as biometric identifier on mobile devices seems a natural choice.
KD is a behavioural characteristic that can be used to obtain
discriminative information about a user by evaluating his/her
typing capabilities. A first understanding about the individual
nature of KD was gained by telegraphists in the mid 1800's,
where operators working on a telegraph were recognized by
their tapping skills [9], which were actually quite different from
operator to operator. The first experimental tests confirming the
existence of discriminative traits within the typing behaviour of
each subject date back to 1980 [10]. KD can be acquired without
asking the users to perform any specific action. Furthermore,
unlike the majority of other biometric traits, KD allows

F I GURE 3 GSMA Intelligence (3 March 2020). Mobile internet penetration in 2020 and expectations for 2025 (APAC, Asia‐Pacific; MENA, Middle‐East
and North Africa). Retrieved 1 July 2020, from https://www.gsma.com/mobileeconomy/. GSMA, global system for mobile communications association

F I GURE 4 Share of internet users employing mobile online payment services as of fourth quarter of 2018, by region. In Statista. Retrieved 1 July 2020,
from https://www.statista.com/study/21391/mobile-internet-usage-statista-dossier/
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performing both static and continuous recognition, with the
latter modality providing robustness against session hi‐jacking,
in which an intruder may seize control of an ongoing session
after a successful login of a legitimate user [11]. As already
mentioned, recording KD also does not require the usage of any
additional hardware, since the habitual typing rhythm of a per-
son can be collected by simply using a keystroke logging soft-
ware, capturing the timings associated with key‐related
interactions. Moreover, modern smartphones represent a
particularly suitable environment to perform KD‐based recog-
nition, due to the availability of several embedded sensors, not
necessarily engineered for biometric recognition purposes [12].
As a matter of fact, the gyroscope included in all modern mobile
devices may provide information about the orientation of a
phone, its motion, or which hand is used to hold it. Through the
accelerometer, it could be possible to estimate the user's speed
of walking. The global positioning system sensor could provide
information about the location of the device. Touch sensors
could also provide data about the way a user touches the phone
and swipes on the screen [13].

The increasing relevance on this KD‐based recognition is
also witnessed by the recent interest of banks and retailers in
analysing how a user types on the smartphone screen, and how
a phone is held while performing an online transaction, to
verify the customers' identity1. The interaction with text‐entry
interfaces has been also recently recognized by the European
Banking Authority (EBA) as a reliable recognition solution for
multi‐factor authentication [14].

This study surveys the state of the art of KD‐based
automatic recognition systems developed for mobile devices.
The first investigation about the feasibility of recognizing
people through their typing behaviour on mobile devices has
been reported in [15]. Such early attempt has been performed
using a modified mobile Nokia 5110 phone, removing all parts
from the handset with the exception of the keypad interface,
which was connected to a desktop. Since then, several works
have analysed the discriminative capability of KD on mobile
devices. The temporal distribution of publications on this
specific topic is reported in Figure 5.

This study is organized as follows: the signals which can be
acquired by commercial mobile devices, and employed for
KD‐based biometric recognition, are detailed in Section 2.
Both ‘classical’ characteristics such as those based on timing
information, and ‘advanced’ traits related to the exploitation of
embedded sensors such as gyroscope, accelerometer, and so
forth [16], are analysed. Section 3 outlines the datasets, either
public or private, collected in state‐of‐the‐art approaches
dealing with KD‐based biometric recognition on mobile
phones. The features exploited in the studies covered in this
overview are detailed in Section 4, while the classification ap-
proaches proposed for accomplishing either identification or
verification are discussed in Section 5. A comparative analysis
of the obtained recognition performance, together with a

summary of the findings derived from the analyses performed
in literature, is given in Section 6. Section 7 outlines future
research directions, while conclusions are finally drawn in
Section 8.

2 | MOBILE KEYSTROKE DYNAMICS:
AVAILABLE DATA

When dealing with KD, both in the desktop and mobile
framework, different scenarios can be considered to acquire
keystroke‐related data [17]:

� Fixed text, which includes:
� Personal identification numbers (PINs), that is, sequences

of numbers used, for example, to unlock mobile sub-
scriber identity modules (SIMs) or to withdraw cash from
Automated teller machines. The length of PINs used to
access mobile phones typically consists of four digits, yet
numerical sequences with a higher number of digits could
be also employed, depending on the considered applica-
tions and the required security level;

� Usernames or passwords, consisting of sequences of
alphabetic or alphanumeric characters. The common
password length ranges from six to 15 characters,
including also special characters, usually employed to in-
crease security;

� Passphrases, with users typing sentences or paragraphs
pre‐set during the enrolment stage, then replicated during
the recognition stage. In this case, the length of the
provided inputs may be in the order of several dozens of
characters;

� Free text, where users, different from the previous cases, are
free to provide any input, regardless what has been previously
recorded during the enrolment phase. One‐time passwords
(OTPs) can be considered as a special case of free‐text input,
since they can be used only in one occasion, after which the
sequence can no longer be repeated and used.

While subjects provide their inputs, different signals can be
recorded and employed to characterize the users. In the
following, we detail the information which can be made easily
available by smartphones working under the Android OS.
Specifically, timing information is described in details in Sec-
tion 2.1, while the signals recorded by standard sensors
embedded in modern mobile devices are outlined in Sec-
tion 2.2. A summary is given in Table 1.

2.1 | Timing information

Most of the approaches exploiting KD for biometric recog-
nition purposes rely on the timing information to discriminate
among users. Mobile devices usually offer the availability of
timestamp information, recording the instants when different
keys are pressed and released. From such basic information,
several latency measures can be then computed.

1https://www.nytimes.com/2018/08/13/business/behavioral-biometrics-banks-security.
html
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2.1.1 | Timestamp

The traditional time‐based signals extracted from KD data
record the key‐press and key‐release events as follows:

� Key‐press timestamp (KPT), which is the system timestamp
value, at the moment of key press, typically recorded in
milliseconds;

� Key‐release timestamp (KRT), which is also the system
timestamp value, at the moment of key release, in
milliseconds.

From the aforementioned raw information, several other
discriminative measures can be derived.

2.1.2 | Latency

Several distinct measures of latency can be generated from the
recorded timestamps. The most‐commonly used information
regards the key hold/dwell time (KHT or KDT), representing
the time taken from pressing a key to its release. For a given n‐
th pressed key, KHTn is evaluated as
KHTn ¼ KRTn � KPTn. With reference to Figure 6, the
subscripts refer to the order of key press and release events.

More in general, given an input string and any two distinct
characters within it, each associated to one key, the following
latencies can be considered [18]:

� Key press‐release time (PRT), corresponding to the lapse
from the press of a key to the release of the other one. This
is often referred to as generalized key dwell time;

� Key press‐press time (PPT), corresponding to the lapse
from the press of a key to the press of the other one;

� Key release‐press time (RPT), corresponding to the lapse
from the release of a key to the press of the other one. This
is often referred to as key flight time (KFT);

� key release‐release time (RRT), corresponding to the lapse
from the release of a key to the release of the other one.

The aforementioned measures can be arranged as di‐graph,
tri‐graph, and N‐graph latencies [18] according to the distance
between the two considered letters in the typed string, as
graphically outlined in Figure 6. Specifically, we refer to mea-
sures calculated from time events of two different but adjacent
characters as di‐graph latencies. Time features are called tri‐
graph when computed from time events of two characters
separated by an intermediate one. Similarly, if the timing fea-
tures are calculated between time events of characters distant
N‐1 positions in the provided text string, then the time features
are known as N‐graph features. The apexes D, T, and N are
used in the following to specify the kind of considered latency,
being it di‐graph, tri‐graph, or N‐graph, respectively, as
graphically shown in Figure 6.

2.1.3 | Typing speed

From the collected KD data, the user typing speed can be
determined by means of several measures, such as the words
per minute (WPM), defined in [19] as the average number of
words that could be typed by the considered user in a minute.
This value is estimated in [19] by considering the length in
characters of the input string (IL, excluding backspaces),

F I GURE 5 Papers dealing with KD‐based biometric recognition on mobile devices; KD, keystroke dynamics
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the time required to type it (IT, in seconds, including back-
spaces), and assuming an average length of five characters for a
word, thus obtaining WPM ¼ ½60 ðIL � 1Þ�=ð5 ITÞ.

Some other metrics have been mentioned in [19] for
evaluating KD typing speed, such as:

� Characters per second (CPS), defined asCPS ¼ ðIL � 1Þ=IT
� Adjusted WPM (AdjWPM) [20], considering typing errors

to improve the estimate of WPM;
� Keystrokes per second (KPS), similar to CPS, yet consid-

ering the backspace key as a keystroke, different from CPS

TABLE 1 Summary of data available in mobile devices for keystroke dynamics‐based biometric recognition systems

Type Acronymn Description

Timing information KPT/KRT Key‐press/key‐release timestamps

KHT (KDT) Key‐hold (key‐dwell) time, lapse passing from the press and release of a key

PRT Key press‐release time, lapse passing from the press to the release of different keys

PPT Key press‐press time, lapse passing between the press events of different keys

RPT (KFT) Key release‐press (key‐flight) time, lapse passing from the release to the press of different keys

RRT Key release‐release time, lapse passing between the release events of different keys

WPM Word per minute, a measure of typing speed

CPS Characters per second, typically excluding backspaces

AdjWPM Adjusted word per minute, modified version of WPM considering errors

KPS Keystrokes per second, similar to CPS (including backspace)

Screen motion event (SME) P Finger touch pressure on the mobile device screen

A Finger area on the mobile device screen

TC Finger touch coordinates (x, y) on the mobile device screen

DfC Cartesian distance from the key centre of the touch at release event

DbT Cartesian distance between the coordinates of two different finger touches

V Velocity of the motion event, specifying the direction of finger movement on the mobile device
screen

DRG Drag, Cartesian distance between the coordinates at press and release of a key

Sensor information motion ASD Accelerometer providing acceleration along x, y, z axes (considering gravity)

UASD Uncalibrated accelerometer providing acceleration along x, y, y axes (without bias compensation)

LASD Accelerometer providing acceleration along x, y, z axes (excluding gravity)

GRSD Gravitational sensor providing the magnitude and direction of gravity over x, y, z

GSD Gyroscope providing the rotation around x, y, z

UGSD Uncalibrated gyroscope providing the rotation around x, y, z axes (excluding gyro‐drift
compensation)

RVSD Rotation vector sensor providing the orientation of the mobile device

Position GRVSD Game rotation vector sensor, similar to RVSD (excluding the use of geomagnetic field sensor)

GERVSD Geomagnetic rotation vector sensor, similar to RVSD (including the use of geomagnetic field
sensor)

GFSD Geomagnetic field sensor providing the strength of geomagnetic field along x, y, z

UGFSD Uncalibrated geomagnetic field sensor providing the strength of geomagnetic field along x, y, z
axes (without calibration and with bias estimation)

OSD Orientation sensor providing the x, y, z mobile device position

PSD Proximity sensor providing the face distance from the mobile device screen

Addit. SCD Steps counter monitoring the pace of a user while walking

SDD Step detector, monitoring user's step movements while walking using the mobile device
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which does not consider erroneous typing and backspaces,
just as WPM.

2.2 | Sensor information

Modern mobile devices embed several sensors which may
provide data to be used for KD‐based biometric recognition
[21], in addition to timing information. For instance, since the
emergence of smartphones with touch screens, finger pressure
(P) and area (A) are two of the most‐commonly exploited
characteristics that are used within the KD framework [22].
Similarly, the way a user holds the phone, the amount of ac-
celeration observed while moving, the number of fingers used
during typing, are all relevant information that can be used to
complement and support KD‐based biometric recognition in
the framework of continuous authentication [23].

The Android platform categorizes the aforementioned
sensors according to three classes, that is, motion sensors,
position sensors, and environment sensors2. Additionally, the
touchscreen itself has its own set of managed events. The
signals which can be recorded by a mobile device through
sensors belonging to such groups, and used for biometric
recognition purposes analysing the users' typing behaviour, are
detailed hereafter. Environment sensors are not described here
since they do not collect data regarding the users' interaction
with the device.

2.2.1 | Screen motion event sensor data

The Screen Motion Event (SME) class in Android OS defines a
set of events which are executed when any kind of motion
occurs on the touchscreen of a mobile device. Among them,
screen pressure reports the pressure (P) exerted by a finger on
the touch screen, with values in the range between 0 and 1.
Such elements, indicated as P1,…, Pn in Figure 6, actually
contain two pressure values: the one applied when the finger is
pressed against the touchscreen, and the one at the moment of
removing the finger from the touchscreen. Pressure data have
been employed for the first to design KD‐based biometric
recognition systems for mobile devices in [24].

When the finger touches the screen of a mobile phone, the
touch area (A) can be also recorded. Two finger area values are
taken for each key, at the press and release event. Generally, the
value of the touch area is a float value between 0 and 1.

Similarly, also the (x, y) touch coordinates (TC) can be
recorded, with the centre (0, 0) set either with reference to the
whole keyboard, as typically done and shown in Figure 6, or to
the centre of the pressed key, as in [25] where the distance
from the centre (DfC) is computed from the TC at the release
event.

The TC features of two different keys can be employed to
compute the distance between touches (DbT) as the Cartesian
distance between the coordinate positions of the considered
touches.

Another motion event relates to the direction of the
pointer. Velocity (V) is often an important factor in moni-
toring a gesture behaviour, also for checking whether a gesture
occurred or not. In addition, finger drag (DRG), that is,

F I GURE 6 Mobile KD Signals through soft keyboard and different accessible sensors data; KD, keystroke dynamics; KHT, key‐hold time; KPT, key‐press
time; KRT, key‐release time; PPT, key press‐press time; PRT, key press‐release time; RPT, key release‐press time

2https://developer.android.com/guide/topics/sensors/sensors_overview
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the measurement of the distance made by the finger from key‐
down event till key‐up event, as well as the angle of the
movement, can be exploited.

2.2.2 | Motion sensor data

The Android platform provides different types of motion
sensors3, which may be hardware‐ or software‐based. For
instance, three distinct types of information can be derived
from the accelerometer sensor: the standard accelerometer
(ASD) provides three values along (x, y, z) directions, including
gravity. Uncalibrated accelerometer (UASD) provides six
values, three of which measure acceleration along (x, y, z)
without any bias compensation, while the other three values
provide acceleration along the axes with drift compensation.
The linear accelerometer (LASD) stores the acceleration along
(x, y, z) direction exactly as Accelerometer, yet with the
exclusion of gravity. The unit of these three different types of
accelerometer data is m/s2.

The gravitational sensor (GRSD) provides three‐
dimensional data indicating the magnitude and direction of
gravitational force. This software‐based sensor is generally
employed to estimate the mobile device relative orientation.

The rate of rotation around a device (x, y, z) axes is
measured by the gyroscope sensor (GSD). In practical scenarios,
gyroscope noise and drift introduces errors, and these errors
should be properly compensated. The drift and noise are
estimated from information collected through several sensors,
like the gravity or accelerometer ones. The uncalibrated gy-
roscope (UGSD) is just like the gyroscope, yet in this case the
rate of rotation remains the same, with no addition of gyro‐
drift compensation. Still rate of rotation is compensated by
adding calibration of factory level and compensation of tem-
perature. The estimated drift around each axis could also be
calculated using the uncalibrated gyroscope.

Eventually, the rotation vector sensor (RVSD) provides the
device orientation, expressed through an angle θ and the (x, y,
z) axes, with respect to the earth's coordinate system. This type
of sensor is a virtual or software sensor which combines the
values from hardware sensors, such as the accelerometer, the
geomagnetic field sensor, and the gyroscope (if available), to
provide an efficient and accurate orientation of the device.

2.2.3 | Position sensor data

As for the motion sensors, also the Android position sensors4

may be hardware‐ or software‐based. The game rotation vec-
tor sensor (GRVSD) can be compared to the RVSD, with the
difference that it does not use the geomagnetic field sensor
data. The y axis in this sensor does not point north, but to
some other reference direction. The order of drift magnitude

of the gyroscope around the z axis is the same as the drift of
the reference direction. Since this sensor does not use the
magnetic field, relative rotations are more accurate in com-
parison to other rotation sensors.

The geomagnetic rotation vector sensor (GERVSD) is also
similar to the RVSD, yet in this case the sensor uses a
geomagnetic field sensor instead of a gyroscope. Less power is
thus consumed, but while its advantage is low power con-
sumption, there is a disadvantage in terms of less accuracy. The
geomagnetic field sensor can also provide two different mea-
sures of the geomagnetic field: the geomagnetic field sensor
(GFSD) gives geomagnetic field strength in three axes, while
the Uncalibrated Geomagnetic Field Sensor (UGFSD) does
not include hard iron calibrations.

The orientation sensor (OSD) is a virtual sensor estimating
mobile device location keeping Earth magnetic north pole as
reference. It usually calculates the angles of orientation by
combining the values from the geomagnetic field sensor and
the accelerometer sensor. Using the data from these sensors,
the following information can be provided:

� Azimuth (rotation degrees about the z axis), angle between
the north and the device compass direction in the current
state;

� Pitch (rotation degrees about the x axis), angle between
planes parallel to the ground and to the device screen;

� Roll (rotation degrees around the y axis), angle between
planes perpendicular to the ground and to the device screen;

It is worth mentioning that the combination of acceler-
ometer and geomagnetic field data requires high computational
power, with the consequence that the achievable orientation
sensor precision and accuracy is typically low. Specifically, this
measure can be trusted only when the roll angle is 0, otherwise
its use is not recommended.

The proximity sensor (PSD) monitors the distance be-
tween the face and the mobile phone, with a maximum range
of about 50 cm. It can produce signals comprising either float
values indicating the estimated distances, or binary terms
describing whether the user is near or far from the screen.

2.2.4 | Additional sensor data

There is additional sensor information, typically classified
within the motion sensors class, not yet exploited in literature
about KD for biometric recognition, which could be useful to
extract discriminative information from a typing behaviour.
For instance, the step counter (SCD) and step detector (SDD)
sensors, both hardware‐based sensors, provide information
regarding human steps data. These could be useful to monitor
KD while walking. The SCD provides the number of steps the
user of the device has taken since it has been switched on, and
the SDD triggers an event when a user starts a step.

The timing information mentioned in Section 2.1, and the
sensor information reported in Section 2.2, can be exploited by
arranging them in different array‐wise data types collected for

3https://developer.android.com/guide/topics/sensors/sensors_motion
4https://developer.android.com/guide/topics/sensors/sensors_position
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different pressed keys, with this collection of arrays employed
as features vectors, as discussed in Section 4.

3 | MOBILE BASED KEYSTROKE
DATASETS

A general overview of the databases collected and exploited in
state‐of‐the‐art KD‐based biometric recognition systems for
mobile devices is presented in this section. Table 2 provides a
summary of the main datasets collected in literature, together
with their primary characteristics. In more detail, only datasets
comprising KD samples acquired from at least 20 subjects are
there reported. The following subsections detail the properties
of each collection of data, categorizing them according to the
kind of input recorded from the involved subjects.

3.1 | Fixed text

As mentioned in Section 2, fixed text involves the use of PINs,
passwords, or passphrases, detailed in the following.

3.1.1 | Personal identification numbers

PINs have been always used in the access control protocols of
mobile devices, mainly to unlock SIMs. They are also often
required to access online services such as bank accounts. Not
by chance, most of the research on KD‐based biometric
recognition for mobile devices has focused on PINs as input.
The first proposal of a recognition system for mobile devices
relying on KD has actually investigated the discriminative
capability of the behaviour recorded while typing four‐ and
10‐digit PINs [15], collecting data from 16 subjects using a
modified handset connected with a desktop computer.

The first dataset comprising PINs collected through a
mobile phone has been presented in [26]. Different phones
have been yet used by each of the 25 involved subjects, with
this aspect possibly affecting the computed recognition per-
formance. All the employed devices were equipped with a hard
keypad, with keys arranged in a 4 � 3 matrix. The same type of
keyboard was embedded in the Samsung SCH‐V740 model,
employed in [27] to record KD from 25 subjects, each
donating 30 KD samples. In order to increase typing unique-
ness, temporal cues, working like a metronome, have been
provided during acquisitions to help subjects keeping the beat.
Given the limited capabilities of the employed devices, only
timing information has been collected in both aforementioned
studies.

Since then, research on mobile KD biometrics has been
performed on data collected using smartphones with soft
keyboards. However, it has to be mentioned that, when using
the Android platform and factory designed soft keyboards
such as Gboard, it is not possible to extract the needed timing
information since the function is inhibited for privacy reasons.
Therefore, researchers are required to develop custom soft

keyboards using the available support5, install them on the
mobile device, and thus record and get access to the desired
KD data. This is typically done trying to resemble the layout of
the default soft keyboards available in smartphones [59].

Mobile devices with touchscreens have been employed to
collect KD data in [28], thus allowing to record SMEs related
to the applied finger pressure and finger area. Recordings from
multiple sessions have been there considered for the first time,
with two PINs acquired from each of 100 subjects during each
week of the experiment, which has lasted for 5 weeks. The
employed inputs had varying lengths, ranging from four to
eight digits, with most of subjects (44) using 4‐digit PINs.
Accelerometer data have been collected for the first time in
[29], where also timing and finger area information have been
considered. Data from 55 subjects, each contributing with 30
KD samples, have been there recorded. This database has been
also employed for the tests described in [30].

Five different PINs, three of them with four digits and the
other ones with eight, have been collected in [31] from 80
subjects, each contributing with 25 samples. Both normal and
extreme cases have been considered, with PINs 3‐2‐4‐4, 1‐2‐5‐
9‐7‐3‐8‐4, and 1‐2‐5‐9‐8‐4‐1‐6 representing the former sce-
nario, while 1‐1‐1‐1 and 5‐5‐5‐5 have been used for the latter
one. The recorded signals comprise timestamps, finger pres-
sure and area, as well as accelerometer data.

The same set of information has been also collected in [32],
where 25 PINs with four digits have been recorded from each
of 80 subjects.

The first public database6 containing KD recorded while
using PINs has been described in [33]. A Samsung Galaxy Tab
with a 10.1‐inch screen has been there employed to collect
four‐ and 16‐digit PINs from 150 users, each providing 10
inputs for both short (‘5560’) and long PINs
(‘1379666624680852’). Timing, finger pressure, and finger area
information have been acquired, yet only timing and pressure
data have been employed in [33], while finger area has been
exploited only in a successive work from the same authors [35].
Data collected in [33] have been also employed in [34, 35].

Another public database7 has been collected using an
Android LG‐D820 Nexus 5 mobile device in [37], where a 10‐
digit PIN (‘9141937761’) has been acquired for 30 times from
each of 52 subjects. In addition to timing, finger pressure and
area, and accelerometer data, for the first time in studies
dealing with PINs also TC, and data from the gyroscope
sensor, have been also recorded.

An even larger list of sensors has been considered in [38],
where a 6‐digit PIN (‘766420’) has been collected for 100
times from each of 20 subjects using a Nexus 5X phone.
Specifically, the acquired data comprise timing information,
finger pressure and area, TC, accelerometer and linear
accelerometer, rotation and game‐rotation, gyroscope, and
uncalibrated gyroscope.

5https://android.googlesource.com/platform/packages/inputmethods/LatinIME/
6https://sites.google.com/site/touchstrokedynamics/
7https://bitbucket.org/pacebiometrics/android-biokeyboard/src/master/
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TABLE 2 Databases collected for evaluating KD‐based biometric recognition on mobile devices

Type Paper Subjects Postures Sessionsa Samplesb Input Signals Availability

Fixed text PIN Zahid et al. 2009 [26] 25 1 1 n/a 8‐digit Timing Private

Hwang et al. 2009 [27] 25 1 1 35 4‐digit Timing Private

Tasia et al. 2013 [28] 100 1 5 2 4‐ to 8‐digit Timing, SME Private

Ho et al. 2013 [29] 55 1 1 30 4‐digit Timing, SME,
motion

Private
(also used
in [30])

Zheng et al. 2013 [31] 80 1 1 25 4‐ and 8‐digit Timing, SME,
motion

Private

Mendizabal et al. 2014 [32] 80 1 1 25 4‐digit Timing,
SME, motion

Private

Teh et al. 2015 [33] 150 1 1 20 4‐ and 16‐digit Timing, SME Public
(also used
in [34–36])

Coakley et al. 2016 [37] 52 1 1 30 10‐digit Timing,
SME, motion

Public
(also used
in [36])

Lee et al. 2019 [38] 20 1 1 100 6‐digit Timing, SME,
motion, Position

Private

Wang et al. 2019 [39] 104 1 1 20 4‐digit Timing,
SME, motion

Private

Password Campisi et al. 2009 [40] 30 1 1 120 6‐character Timing Private

Antal et al. 2014 [41] 42 1 2 20 14‐character Timing, SME Public
(also used
in [42])

El‐Abed et al. 2014 [43] 53 1 3 5 14‐character Timing Public
(also used
in [42])

Giuffrida et al. 2014 [44] 20 1 1 40 8‐character Timing, SME,
motion

Private

Buschek et al. 2015 [25] 28 3 2 120 10‐character Timing, SME Private

Al‐Obaidi et al. 2016 [45] 56 1 2 17 10‐character Timing, SME Private

Antal et al. 2016 [46] 54 1 3 60 13‐ to
15‐character

Timing, SME,
motion

Public
(also
used in [36])

El‐Abed et al. 2018 [47] 47 4 1 15 14‐character Timing Public

Tse et al. 2020 [48] 31 1 1 50 14‐character Timing, SME Private

Passphrase Trojahn et al. 2013 [49] 152 1 1 10 17‐character Timing Private

Gascon et al. 2014 [50] 315 1 1 1/10 160‐character Motion, Position Private

Kambourakis et al. 2014 [51] 20 1 1 12 47‐character Timing, SME Private

Free Text Clarke et al. 2003 [15] 32 1 3 10 14‐word
(average)

Timing Private

Feng et al. 2013 [52] 40 1 1 varying 23 words
(average)

Timing, SME Private

Sun et al. 2017 [53] 26 1 varying >29 varying Timing, SME,
motion

Private

Crawford et al. 2017 [11] 36 6 1 22 varying Timing, motion,
Position

Private

Inguanez et al. 2017 [54] 32 1 1 75 2‐ to
13‐ character

Timing, SME Private

Alshanketi et al. 2019 [55] 100 1 2 10 6‐digit Timing, SME Private
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PIN acquisitions have been taken for the first time ac-
cording to multiple postures in [39], where lying, sitting,
standing, and walking conditions have been considered. At
least 20 KD samples have been collected from each of 104
subjects, considering timing, finger pressure and area, and
accelerometer signals.

3.1.2 | Password

A Nokia 6680 equipped with a hard keypad has been employed
in the first detailed evaluation of the discriminative capability
of KD recorded while typing passwords [40]. Specifically, six
different passwords, each made of ten characters, have been
collected from 30 subjects, providing 20 samples for each
password. The employed keypad had characters multiplexed in
a 4 � 3 matrix, with more characters associated to the same
key. As for the other studies conducted on mobile devices with
hard keypads, only timing information has been acquired.

A public database8 has been described in [41]. Two
acquisition sessions have been carried out, with 42 subjects
asked to provide 30 passwords in each session. Five subjects
have used a Mobil LG Optimus L7 II P710 phone, while 37
other subjects have used a Nexus 7 tablet. The password
‘.tie5Roanl’, requiring 14 key presses due to the need for
switching two times between upper‐ and lower‐case letters, and
two times between letters and numbers, has been employed.
The collected information consists of timing data, together
with finger pressure and area, and have been used also in the
work [60].

Another public dataset9 has been presented in [43], where
53 individuals have participated in the recording process,
typing the password ‘rhu.university’ for five times during each
of three acquisition sessions, with time periods between 3 and
30 days separating each session. Only timing information has
been there collected and made available. Yet, no test has been
performed on the collected data.

Forty subjects, each typing 20 passwords, have participated
in the collection of the dataset described in [44]. Gyroscope
information has been there considered for the first time in the
KD‐based biometric recognition framework, together with
timing and accelerometer information.

A detailed study on KD data recorded having subjects
using only a thumb, two thumbs, or the index finger for typing,
has been conducted in [25]. A Nexus 5 phone held in portrait
orientation has been used to record 10‐character passwords
from 28 subjects during two sessions, taken one week apart.
For each hand posture, participants have typed six different
passwords in random order, 20 times each. In addition to
timing and pressure data, also touch locations have been
recorded during each acquisition. The collected database has
been used to perform the first proper evaluation of perfor-
mance achievable using KD on mobile devices in within‐ and
across‐sessions comparison conditions.

A public dataset10 has been also outlined in [45], where 10‐
character passwords have been collected from 56 subjects.
Specifically, two distinct recording sessions have been there
carried out, the first one using a Nexus 7 tablet, and the second
one with a Nexus 9 model. The two sessions have been
respectively employed for enrolment and verification purposes
in the performed tests, therefore implementing an across‐ses-
sion and across‐device experimental framework using the
recorded timing, finger pressure, and finger area information.

The authors of [41] have described another public data-
base11 in [46]. Three different types of passwords, namely an
easy (E: ‘kicsikutyatarka’), a strong (S: ‘.tie5Roanl’), and a
logically strong (LC: ‘Kktsf2!2014’) ones, have been collected
from 54 subjects, each typing for 20 times each password
during three distinct acquisition sessions, using a Nexus 7
tablet. With respect to [41], accelerometer and TC have been
also recorded. The data in [46] has been also employed in [36].

Four different conditions have been instead considered in
the public database12 described in [47], where 47 individuals
have participated in an acquisition campaign by typing the
same password used in [43] on both a phone (Nexus 5) and a
tablet (Samsung Galaxy Note 10.1), in both portrait and
landscape orientations. Only timing information has been there
recorded. As for [43], no test has been performed on the
collected data.

The same password employed in [41] has been also used in
[48], with 31 subjects each providing 50 samples, from which
timing and touch coordinate information have been recorded.

TAB LE 2 (Continued)

Type Paper Subjects Postures Sessionsa Samplesb Input Signals Availability

Cilia et al. 2018 [56] 24 2 1 1/23 15‐sentence Timing, SME Private

Buschek et al. 2018 [57] 30 6 varying varying varying Timing, SME Public

Belman et al. 2019 [58] 117 1 2 10 >50‐character Timing, SME, motion Public

Abbreviations: KD, keystroke dynamics; SME, screen motion event.
aper posture.
bper posture and session.

8https://ms.sapientia.ro/∼manyi/keystroke.html
9www.coolestech.com/RHU-Keystroke

10https://sites.google.com/site/keystrokedatasets/
11https://ms.sapientia.ro/∼manyi/mobikey.html
12www.coolestech.com/keystroke-web-visualizer
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3.1.3 | Passphrase

Long fixed texts have been considered as input of the pro-
posed KD‐based biometric recognition systems for mobile
devices only in few works. Actually, such modality is probably
the least suitable to be considered for practical applications.

A 17‐character passphrase has been recorded from 152
subjects, each typing the same sentence for 10 times using a
Galaxy Nexus, in [49], where only timing information has been
collected.

A predefined text made of 160 characters, comprising
different pangrams containing all letters of the English, has
been considered in [50]. Recordings from 315 subjects have
been taken, yet only 12 of them, employed as authorized users
in the performed tests, have provided data for 10 times, while
the remaining participants typed the employed text only once.
Instead of resorting to standard signals such as timing, the tests
carried out in [50] have exploited accelerometer, gyroscope,
and orientation sensors.

A 47‐character phrase, including all 26 possible letters of
the alphabet (‘the quick brown fox jumped over the lazy
ghost’), has been instead used in [51]. Twenty subjects have
typed the required inputs for 12 times on a Sony Ericsson
Xperia mobile phone, while recording timing and TC
information.

3.2 | Free text

Performing automatic recognition on the basis of the KD
recorded while typing free text is commonly considered a
much more difficult task, with respect to the exploitation of
fixed text. Nonetheless, being able to recognize users in dy-
namic text conditions would allow performing continuous
authentication, with legitimate subjects recognized while using
mobile devices for tasks such as writing email or text messages,
activities which are nowadays daily performed by every
smartphone user. The research on this topic is therefore
extremely relevant, with several approaches proposed espe-
cially in recent years.

It has however to be remarked that free text recognition
has been considered in one of the very first attempts of per-
forming KD‐based recognition on mobile devices. The authors
of [61] have in fact collected texts composed by a mixture of
quotes, lines from movies, and typical messages, from 32
subjects, each typing 10 messages during three acquisition
sessions. The typed sequences had varying length, with an
average of 14 words per text. Data have been acquired through
the same modified handset employed in [15], being able to
acquire only timing information.

Also pressure data have been instead collected in [52], where
post‐login attacks have been considered. Sentences having a
length varying from 14 to 53 words, and an average of 23 words,
have been shown to the 40 involved subjects, then asked to enter
the required sentences using the virtual keyboard.

An evaluation study lasting 8 weeks and involving 26
subjects has been described in [53]. Participants have been

asked to normally use a mobile phone during the experiment,
with the most active one typing 4702 messages, and the least
active using the phone for 29 times. The recorded instances
include both simple messages as well as inputs requiring al-
phabets and special characters. For each text, information
regarding the timing and TC of pressed keys are collected
together with the accelerometer information.

Texts have been recorded from subjects holding devices in
either portrait or landscape orientations, and typing while either
seated, standing, or walking, in [11]. Each of 36 participants has
provided at least 22 text messages in each of six considered
experimental conditions. As in [52], the involved subjects have
been asked to replicate sentences shown in a box, thus per-
forming a transcription task, which may have an impact on
their typing patterns. Timing, device orientation, user position,
and instantaneous gyroscope data have been recorded.

The study on [54] has been carried out on data gathered
using a Samsung Galaxy S5 device from 32 users, asked to
input 60 different words, with five words for each of different
lengths, ranging from two to 13 characters. Furthermore, a set
of 15 questions requiring participants replying with words
from memory, rather than copy them from screen, has been
submitted to the involved subjects. Timing, finger area, and TC
have been recorded during typing activity.

OTPs have been instead considered for the first time in
[55]. This kind of entry can be considered as a special case of
free text, where six‐digit randomly generated PINs are used to
perform recognition only once, being therefore impossible to
train a given classifier over data comprising the same charac-
ters. One hundred subjects have been involved for data
collection, with each of them providing at least 10 OTPs
during two acquisition sessions, while timing information has
been collected together with finger area and pressure.

Typing sessions made up of 15 sentences, each having
around six terms without digits, have been performed in [56]
using a Samsung Galaxy S5 phone by each of 24 subjects. Only
one of them, employed as legitimate user in the performed
experimental tests, participated in multiple sessions, while the
remaining ones performed only a single recording session. Two
typing conditions, involving the usage of one hand or two
hands for typing, have been considered, collecting timing and
TC information during each session.

As in [53], free typing in the wild has been performed by 30
subjects during 3 weeks in [57], where six different postures,
involving for instance typing with either two thumbs or only
one, have been considered. The collected data comprise timing
and touch coordinate information and are available upon
request13.

Finally, a public database14 has been recently proposed in a
pre‐print [58]. The described database comprises free text
samples acquired from 117 subjects using a HTC‐Nexus‐9
tablet and both a Samsung‐S6 phone and an HTC‐One mobile
phones. Specifically, two sets with ten questions each, requiring

13http://www.medien.ifi.lmu.de/research-keyboard//intro
14http://dx.doi.org/10.21227/rpaz-0h66
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varying cognitive loads, have been presented to the partici-
pants, which have been asked to reply with a minimum of 50
characters. A first set has been presented on a tablet, while one
of the two mobile phones has been used when replying to the
second set. The performed KD have been recorded through
timing, finger area and pressure, touch location, accelerometer,
and gyroscope information. As for [43, 47], no test has been
performed on the collected data.

4 | TEMPLATE GENERATION

In this section, with reference to Section 2 and to Figure 6, the
features extracted from the collected signals, and used to
represent KD information through discriminative templates,
are discusses. In more detail, the approaches employed to deal
with fixed text inputs are outlined in Section 4.1, while the
features exploited to represent free text are described in Sec-
tion 4.2. A summary of the features employed in state‐of‐the‐
art studies is reported in Table 3.

4.1 | Features employed for fixed text
representation

Treating KD associated to fixed text entries has the notable
advantage of having to process, for each acquisition, the same
and known number of input keys. Generating ordered repre-
sentations of the recorded data is then generally quite
straightforward, since a template can be simply generated by
collecting several measures from each key‐related event.

The most common data correspond to timing information,
which in fact has been exploited in all the proposed works, with
the only exception of [50]. In more detail, the KHT and di‐
graph RPTD, respectively representing the hold time for each
pressed key, and the flight time between consecutive keys, are
considered among the most discriminative features which can
be derived from timing information, and have been therefore
always included in the feature sets employed in literature. As
for RPTD, it has to be mentioned that a customized version of
this feature has been employed in [26], where a 4 � 3 hard
keypad has been employed as user interface, and di‐graphs have
been categorized into measures computed between horizontal/
vertical and adjacent/non‐adjacent keys, instead of simply be-
tween consecutive keys as in all the rest of literature.

Among the remaining di‐graph features, PPTD is the one
employed in most of the proposed works, followed by RRTD,
with PRTD instead exploited only in four studies, as indicated
in Table 3. Comparative evaluations have however pointed out
that all di‐graph features contain similar amounts of discrimi-
native information [33]. It has been instead often noticed that
the hold time KHT has less discriminative capability than di‐
graph latency times [33, 36], although there is not a general
consensus [44]. Several concurrent evidences have been re-
ported regarding the low discriminative power of tri‐graph and
N‐graph latencies [35, 36, 44, 49]. Therefore, literature studies
suggest to take into account only hold time and di‐graph

latencies when extracting features from the collected timing
information.

Besides temporal data, finger pressure and area recorded by
touchscreen devices have been exploited in most cases. Both
features, but especially pressure, have shown discriminative
capabilities better than timing characteristics in the vast ma-
jority of the works where they have been used [25, 29, 33, 35,
36], although results conflicting with this observation have
been also reported [37].

SME signals collected by touchscreen devices also include
TC, recorded at both key press and key release instants. The
collected information has been used as‐is [25, 37, 38, 48], or
exploited to compute additional metrics, such as the drag DRG
between TC at press and release events of the same key [25],
the distance DbT between coordinates of consecutive key press
events [25, 46, 51], and also the velocity V, computed as
quotient of the distance DbT and the corresponding latency
time [46, 51].

As previously mentioned, the aforementioned timing and
SME data are collected at specific key‐related events and then
arranged into a template whose size depends on the length of
the processed input. It is yet also possible to generate repre-
sentations not depending on the length of the recorded KD.
Such second‐order features [41, 46] are typically obtained
computing statistics from the collected raw data, including for
instance the minimum, the average, the maximum, and the
standard deviation metrics of the considered features [32, 35,
45, 48]. Exploiting such second‐order features has always
resorted in improved recognition performance, being also
possible to use fixed‐size templates relying only on them [46].

Statistical measures have been often employed to process
signals acquired through inertial sensors, such as accelerometer,
gyroscope, and rotation. These data are in fact continuously
recorded by mobile devices, and therefore not necessarily
associated to key press and release events. In order to derive
fixed‐size representations from the collected data, statistical
features have been actually computed in [29, 44], and [30].
Given the long length of the passphrases considered in [50],
the nine signals collected from the 3‐axis accelerometer, gy-
roscope, and rotation sensors are divided into frames lasting a
fixed amount of time, and features are then computed from
them. Differently from the aforementioned approaches, and
similarly to the methods employed to process timing and SME
information collected from fixed‐text inputs, several studies
exploit the signals recorded from motion and position sensors
by sampling them at key press and release events, as done in
[32, 37, 39, 46], and [38].

4.2 | Features employed for free text
representation

While all approaches dealing with KD derived from fixed text
employ similar methods for generating the used biometric
representations, either collecting signals at specific and ex-
pected time events, or computing statistical features sum-
marizing the observed behaviour, more heterogeneous
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approaches have been proposed to process free text inputs.
In fact, in this latter case the signals collected during enrol-
ment and recognition stages can be considerable different, in
term of content and length. In principle, it is not even
guaranteed that a subject types the same keys during the two
phases. Therefore, specific strategies have to be defined to
generate templates which could be compared to determine
their similarity.

Some approaches have been defined to select, from the
collected data, a subset of events which are most likely to occur
several times while typing free texts. For instance, only the
most recurrent characters have been employed in [61] to
perform recognition regardless the actual words or sentence
composed by users. For such characters, which have been
identified as the set {E,T,A,O,N,I}, the hold time KHT has
been computed and used as discriminative feature. An analo-
gous approach has been followed in [52], where the 40 most
frequently used combinations of consecutive keys have been
chosen according to the statistical distributions of English
words. The RPD di‐graph latencies associated to such pairs
have been used to create the desired templates, together with
KHT and pressure information associated to each of the 41
keys available in the employed keyboard. A dynamic feature
space has been considered in [11], where hold times, di‐graph
latencies, and instantaneous gyroscope, orientation, and posi-
tion, for which at least a minimum number of four different
instances are available, have been used at the early stage of the
data collection process, with the feature space growing as more
data is being collected. Only the first two pressed keys of each
typed word have been instead considered in [54] to define the
employed template, together with statistical metrics of all
the collected di‐graphs, coordinates, distance, velocity, and
finger area.

Conversely, the entire amount of collected data is employed
in [53], without performing any selection, by directly storing
the time series associated to the duration of a keystroke, the
time since last keystroke, and the distance from last keystroke.
The recorded sequences are divided into different ‘views’,
depending on whether the performed keystroke is associated
to an alphabet letter or to a special character. A third view
consisting of the time series recorded by the accelerometer
sensor has been then added. Statistical features associated to all
pressed keys and related to the corresponding TC, drag dis-
tance and velocity, and KHT, have been instead considered in
[56]. Distributions of data have been also estimated as in [55,
57]. In the former case, the layout of the employed virtual
keyboard has been considered to categorize consecutive keys
into pairs having similar distances in either left or right di-
rections. The flight times corresponding to each occurrence of
the so‐defined pairs are then averaged to assign representative
features to each data point, thus creating graphical represen-
tations of the collected data having travel distances on the x‐
axis, and corresponding flight times on the y‐axis. Missing
points which could not be evaluated on the basis of the
collected data are instead estimated resorting to a polynomial
curve fitting algorithm. As for [57], data recorded during a

typing activity are represented through distributions of KHT,
di‐graph latencies, TC, and drag characteristics. Gaussian dis-
tributions are used to model the distribution of the collected
samples. In order to exclude breaks in the typing process, a
maximum typing gap time of four seconds is set, after which
the related keystrokes are not considered for computing the
considered statistics.

5 | TEMPLATE COMPARISON AND
DECISION MAKING

The template comparison and decision‐making strategies used
in state‐of‐the‐art KD‐based recognition methods are here
described. Section 5.1 outlines the approaches employed to
compare templates derived from fixed texts, while the strate-
gies adopted for dealing with free texts are presented in Sec-
tion 5.2. In both cases, the proposed methods have been
categorized into identification, closed‐set verification, and
open‐set verification modalities. A summary of the employed
methods is reported in Table 3, where the approaches resulting
in the best achieved performance for each work are
mentioned.

Identification scenarios are adopted in systems requiring
data from all legitimate users being available for training the
employed classifiers. The recognition phase is then carried out
selecting probe samples from the considered users, and taking
a decision about the identity of their owners exploiting the
trained machine learning approaches, therefore performing
1‐to‐many comparisons.

Verification consists in deciding whether a probe sample
has been collected from the user whose identity has been
declared, comparing the available data with a model previ-
ously stored during the enrolment phase of the considered
user. A closed‐set scenario requires, during the enrolment
stage of each user, the availability of data taken from all the
subjects that are considered for testing purposes, similarly to
identification conditions. According to such approach, during
enrolment it is possible to train binary classifiers, discrimi-
nating samples of the considered user from those of all the
rest of exploited subjects. Such possibility is instead not
allowed in open‐set verification, where data taken only from
the interested user is available to perform the enrolment
phase, and samples from subjects not available during
enrolment are then employed to evaluate the capability of
rejecting unauthorized individuals in the recognition phase.
One‐class classifiers, often indicated also as anomaly de-
tectors, have to be trained for each user during enrolment in
this scenario, with the aim of modelling the distribution of
available KD samples.

Within the context of KD‐based biometric recognition on
mobile devices, the scenario most resembling practical usage is
represented by the open‐set verification, since it is unrealistic
to assume that data taken from all the subjects which will
attempt accessing a mobile device or its applications are
available during the enrolment of its legitimate user.

16 - MAIORANA ET AL.



5.1 | Fixed text comparison

As reported in Table 3, among the surveyed studies, identifi-
cation scenarios have been considered once for PIN inputs
[32], and twice for passwords [41, 48]. Several machine learning
approaches from the Waikato Environment for Knowledge
Analysis (WEKA) suite of algorithms [62], namely naive Bayes,
Bayeasian networks, k‐nearest neighbour (k‐NN), classification
and regression trees (CART), logistic regression (LR), linear
discriminant analysis (LDA), support vector machines (SVMs),
and multi‐layer perceptron (MLP), have been tested in [41, 48]
to achieve the best possible recognition results, with random
forest (RF) outperforming other approaches in [41], and LDA
giving the best results in [48]. A MLP network with a single
hidden layer has been instead fed with representations made of
20 coefficients, obtained applying principal component analysis
on the employed templates, in [32].

Closed‐set verification scenarios have been applied to PIN
inputs in [26, 29, 30, 37], and [39], to passwords in [42], and to
passphrases in [50]. Particle swarm optimization (PSO) is used
in conjunction with genetic algorithms to classify the timing
features employed in [26]. SVMs have been employed in [29,
37, 50], and [39]. In this latter case, an adversarial noise‐based
approach, with noise added to the available samples to increase
the generalizability of the trained classifiers, has been also
proposed. RF has been exploited in [42], where an analysis on
the effectiveness of sampling the distributions of genuine and
impostor classes employed during the enrolment of each user
is also performed. A deep neural network with two hidden
layers, initialized on the weights obtained by training Gaussian
restricted Boltzmann machines in an unsupervised modality,
has been employed in [30].

Most of studies performing open‐set verification with
fixed‐text KD inputs have resorted to distance‐based ap-
proaches, computing either Euclidean, Manhattan, or Maha-
lanobis distances between a probe sample and the enrolment
set [27, 28, 31, 38, 40, 45, 46, 49]. The computed distances are
then compared to a threshold to verify the identity of the
subject. A user‐specific normalization of the distances obtained
from different features has been proposed in [40], while user‐
and feature‐specific thresholds have been instead applied to the
computed dissimilarity scores, before taking the final decision,
in [38, 45, 49]. Gaussian models have been employed to
represent the considered feature distributions, with similarity
scores computed evaluating the estimated distributions at
points given by the probe samples, in [25, 33]. In the latter
case, also a least squares anomaly detector (LSAD) has been
employed. A similar approach, yet resorting to mixture of
Gaussian models, has been also used in [36]. One‐class SVMs,
which exploit the availability of a single class to define the
subspace containing feature samples belonging to that specific
class, have been exploited in [35, 44]. In more detail, such
classifiers have been used only to compute the weights asso-
ciated to each feature in [44], where the recognition process is
then carried out computing Manhattan distances between
weighted enrolment and authentication samples. A supervised
classifier has been employed in [51] to estimate the

performance achievable in open‐set scenarios by dividing the
available subjects into training and testing groups. Then for
each user in the testing set, a specific k‐NN classifier has been
trained using samples from training subjects as impostors, and
then evaluating the ability of rejecting unauthorized users
considering the remaining subjects in the testing dataset. The
available subjects have been divided into training and testing
datasets also in [34], where a deep learning approach based on
convolutional neural networks (CNNs) has been for the first
time applied to KD data obtained from mobile devices. In
more detail, the extracted features have been used as input to
networks comprising either three or four unidimensional ker-
nels, depending on the size of the employed PIN, with an
additional fully connected layer and a softmax classifier. The
parameters of the network have been learnt applying it to the
training dataset with identification purposes, and then used to
derive discriminative representations from the features referred
to subjects in the testing dataset, evaluating on this latter the
performance attainable in open‐set scenarios.

5.2 | Free text comparison

User identification on the basis of free texts has been per-
formed in [53]. As mentioned in Section 4.2, three different
views, namely time series of alphabet keystrokes, special
character keystrokes, and accelerometer values, have been there
employed to represent the collected data. A deep learning
approach based on recurrent neural networks has been then
used to separately model each considered time series. Specif-
ically, three gated recurrent unit bidirectional recurrent neural
networks, trained with a RMSprop approach with Nesterov
momentum, process the considered views to extract discrimi-
native representations, with the last layers of each network
concatenated before performing identification. Network
training is performed for an increasing number of enrolled
users, from only two to all the 26 available subjects, to evaluate
the behaviour of the achievable accuracy. As expected, given
well‐known properties of identification processes, the achiev-
able performance worsens as long as the number of considered
user increases.

Standard machine learning approaches have been used in
most of the studies performing closed‐set verification on KD
data acquired when typing free text on mobile devices. Spe-
cifically, RF has guaranteed the best recognition rates in [52,
55], while CART have been used together with LR in [11].
SVMs with Gaussian kernels have been employed in [56], and
also neural networks have been exploited, as in [54, 61]. In
more detail, a radial basis function network has been preferred
over MLP in [61], since it requires the definition of only two
parameters for each neuron. As mentioned in Section 4.2, five
different networks have been trained, for varying sizes of the
set with most recurrent characters. An MLP neural network
with a single hidden layer and binary output has been instead
employed in [54].

Open‐set verification with free text has been evaluated only
in [57], where Gaussian models have been employed to
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characterize the behaviour of both key‐specific and key‐to‐key
transition features.

6 | PERFORMANCE

The best recognition rates achieved in the surveyed studies are
reported in Table 3, grouped in categories defined on the basis
of the employed input and the considered recognition mo-
dality. Specifically, the achieved results are expressed in terms
of:

� False acceptance rate (FAR), providing the percentage of
recognition attempts made by impostors that are falsely
accepted in systems working in verification modality. Low
values of FAR correspond to secure systems;

� False rejection rate (FRR), providing the percentage of
recognition attempts made by legitimate users that are
falsely rejected by the system, in systems working in verifi-
cation modality. Low values of FRR correspond to usable
systems;

� Equal error rate (EER), the operating point where FRR and
FAR are equal. For a verification system to be accurate, the
EER should be as low as possible;

� Correct identification rate, giving the probability of correctly
determining the identity of the presented subject among a
set of possible users, for systems working in identification
modality.

The achieved results show that KD acquired through
mobile devices is actually characterized by discriminative ca-
pabilities. Systems performing verification in open‐set condi-
tions, attaining EERs at about 2%–4%, have been in fact
designed using both PINs and password as fixed‐text inputs, as
for instance in [25, 27, 31, 34, 36]. Even better results have
been shown in [44], although evaluated on a quite small set of
users. Thanks to be possibility of training classifiers on the
whole set of subjects considered during testing, lower EERs
have been achieved in closed‐set verification conditions, such
as in [26, 30], and [39]. Even though it represents a more
challenging scenario, low error rates have been also achieved
when processing free‐text KD as in [52, 56], where closed‐set
conditions have been considered. The hardest scenario to
consider seems the one involving OTPs, which actually
represent inputs hard to be processed even when collected
through computer keyboards [63].

However, it has to be remarked that a proper comparison
of the recognition performance achieved in different studies
cannot be carried out, not even considering works operating
on the same kind of input and in the same modality, since
distinct databases have been typically exploited for testing
different approaches. The only proper comparisons can be
done between [29] and [30] for PINs used in closed‐set veri-
fication, among [33], [34], and [35] for PINs in open‐set
verification, as well as between [36] and [46] for logically strong
passwords in open‐set verification. In particular, the compar-
isons performed on PINs highlight the usefulness of exploiting

deep learning approaches for KD‐based recognition, with the
methods in [30, 34] outperforming standard classifiers.

Other interesting insights on specific aspects can be
derived from the analysis performed within selected studies.
For instance, the feasibility of performing user recognition
comparing KD samples acquired in distinct sessions has been
explored in [25, 46]. Especially in the former paper, it has been
observed that the actual variation of a subject's touch dynamics
patterns cannot be captured if samples acquired from a single
session are employed for enrolment purposes. The EERs ob-
tained comparing KD samples in within‐session and across‐
session conditions in fact notably increase, from 3.84% to
13.74% using the best classifier. Unfortunately, other databases
containing KD samples captured in more than a single occa-
sion have not been exploited to investigate this aspect, since
data coming from different acquisition sessions have been
employed for each user's enrolment.

The studies [25, 46], as well as [35], have also reported a
detailed comparative analysis between the performance
achievable in closed‐set and open‐set verification scenarios.
Several approaches, learning discriminative properties for two‐
class and one‐class problems, have been there exploited, with
the former category notably outperforming the latter, as ex-
pected and shown by the results in Table 3.

Another interesting analysis, regarding the importance of
posture, has been performed in [25], where it has been
observed that a significant variability exists among the EERs
achieved when using only a thumb, two thumbs, or an index to
type on a mobile device. Furthermore, the authors have
observed that entering a password in a system trained on a
different posture may increase the attainable EER by up to
86%, with respect to assuming a fixed posture when the input
is entered. It is therefore recommended, to improve the
achievable recognition rates, to use posture‐specific models
when characterizing the KD collected from the considered
users. Similar evidences and suggestions have been also re-
ported in [56], in [11], and [57] where also the orientation of
the employed mobile device has been taken into account, and
in [39], where lying, sitting, standing, and walking postures
have been considered. Also tests in [31] have highlighted the
need for specific adaptations in the processing performed on
data acquired in different postures, such as avoiding the
accelerometer sensor due to its over‐sensitivity, especially in
the walking scenario.

The effects on recognition performance of varying the
length of the employed inputs have been investigated in [31,
33, 34], and [35] for PINs, and in [40] for passwords. In
general, an improvement in recognition rates has been always
observed when enlarging the size of the employed entries.
However, such gain may be significantly slow, and none of the
aforementioned studies has considered multi‐session scenarios,
which reasonably may affect the observed behaviours, espe-
cially for longer inputs.

Moreover, several studies have compared the discrimina-
tive capabilities of different kinds of features. As already
mentioned in Section 4.1, the higher discriminative capability
of finger pressure and area, with respect to timing information,
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has been for instance outlined in [25, 29, 33, 35, 36]. In more
detail, finger pressure information has been typically reported
as more relevant than finger area [28, 31]. TC, with related
information such as drag, distance, and velocity, have been
instead deemed more discriminative than finger pressure in [25,
51, 54, 57].

The effectiveness of including sensor information within
the set of signals exploited to create KD representations has
been remarked in [29, 53], where data from accelerometer
provided the best recognition rates. The gyroscope has been
observed to provide information more discriminative that
touch location and accelerometer in [11, 37], and [36].

7 | OPEN ISSUES AND FURTHER
RESEARCHES

Although biometric recognition on mobile devices based on
KD has been investigated for more than a decade, it can be still
considered a biometric modality at the early stages of its
exploitation. Actually, the analysis of the typing patterns per-
formed on mobile devices has attracted far less interest than its
counterpart on physical keyboards, for which more in‐depth
evaluations have been conducted [64], and commercial appli-
cations have been proposed15. Nonetheless, given the perva-
siveness of mobile devices, the rapid technology advancements
which have led to the embedding of several miniaturized
sensors, and the widespread of available applications, the
design of systems exploiting KD to recognize the legitimate
users of mobile devices would be an extremely interesting and
profitable field of research. In fact, it would allow performing
non‐invasive and transparent access control to many services
in our everyday life. However, before KD‐based recognition
can be considered a practical and feasible recognition modality
for mobile devices, significant efforts have to be made and
relevant aspects have to be still properly investigated.

One of the major issues affecting the current state of the
art is the lack of public databases on which perform research.
As evident from the information reported in Table 2 and in
Section 6, most of the works proposed in literature have been
tested on in‐house databases, thus preventing the possibility of
conducting proper comparison among different approaches,
with only few exceptions [34, 36]. In order to foster the
research on this topic, it is therefore of primary importance to
collect, and make publicly available, datasets comprising KD
recordings collected on mobile devices. In doing so, several
aspects representing issues of currently available datasets have
to be considered.

First of all, it has to be pointed out that the language
analysed in most of researches on KD is English, which leaves
the influence of the used language in the framework of bio-
metric recognition still unexplored [65]. It would be therefore
required to better investigate scenarios involving non‐

alphabetic characters to verify whether the proposed approach
are robust to language changes.

It has then to be observed that, as shown in Table 2, too
few works have been tested on databases comprising KD
samples from a relevant number of subjects. The size of the
employed database is an important parameter in evaluating the
relevance and the reproducibility of the achieved results,
especially for systems working in identification modality, whose
performance depends on the number of considered users.
Actually, acquisitions from several hundreds of subjects are
commonly available in datasets used for testing other biometric
modalities, including KD on hardware keyboards [64]. The
only public datasets comprising KD recordings taken on mo-
bile devices from more than 100 subjects are the ones
described in [33] and [58]. Yet, while the former still has to be
exploited to estimate achievable recognition performance, the
latter one is characterized by a relevant issue affecting the
reliability of the obtained results. Specifically, as for the most of
in‐house datasets mentioned in Table 2, the database in [33]
has been collected performing a single recording session for
each of the involved subjects. As already commented in Sec-
tion 6, such condition cannot allow simulating a real‐life
behaviour, in which users may perform recognition attempts
even at considerable temporal distances from enrolment, with
the estimated recognition performance being therefore highly
questionable. In addition to preventing a reliable evaluation of
the recognition performance attainable in practical scenarios,
the collection of single‐session databases also hinders the
possibility of investigating the permanence of discriminative
characteristics in KD collected on mobile device, that is, the
stability of the achievable recognition rates. In order to prop-
erly analyse this aspect, multiple recordings taken at an
increasing temporal distance from the first one should be
performed for each involved subject. Despite its importance,
this aspect has never been taken into account when dealing
with KD‐based recognition on mobile devices. It is also worth
mentioning that longitudinal experimental tests have instead
been conducted on KD samples collected through computer
keyboards, reporting sufficient stability of the traits acquired in
sessions separated by time intervals in the order of months
[64]. It would be therefore highly interesting to verifying this
behaviour when typing on mobile devices too. The availability
of longitudinal databases would also be useful to investigate the
need for template update strategies, which have been recom-
mended for biometric recognition systems based on KD
collected through hardware keyboards [66]. Eventually, the
dependence of the discriminative capabilities of the collected
KD recordings on the age of the involved users should be
analysed too.

Along with the need for comparing samples taken during
different sessions, a peculiar aspect to be analysed about KD
on mobile devices, much more relevant than when considering
hardware keyboards, relates to the feasibility of recognizing a
user through typing patterns recorded in different postures.
The use of mobile devices in different conditions, typing with
either a thumb, two thumbs, or an index finger, in either
portrait or landscape orientations, while either walking, lying,15https://www.behaviosec.com/
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standing, or sitting, is in fact a common experience. As
mentioned in Section 6, all the studies which have faced such
scenarios agree on the need for developing specific models for
each possible condition, in order to achieve good recognition
rates. Yet, tests have been made so far on datasets comprising
less than 40 subjects, and most of the time considering free
text acquisitions, with the consequent need for devoting more
efforts in analysing the issues deriving from posture.

Similarly to posture, even the emotional state of a subject
can have an influence on the performed typing activity, and
could be therefore taken into account when collecting and
processing data [67]. Estimating the current mood of a person
could in fact turn out to be beneficial to improve the achiev-
able recognition rates, designing specific models to be exploi-
ted depending on the actual user's state of mind.

In addition to multi‐session and multi‐posture data, it
would be also interesting to collect samples through multiple
acquisition devices, as done in [45]. Such possibility would
make it possible to evaluate the existence of device‐indepen-
dent characteristics within the typing behaviour of a user, or to
investigate the feasibility of transferring the knowledge ac-
quired while using a device into a different one, to improve the
discriminative capability of models estimated on data collected
through a single device. Cross‐platform compatibility would
notably ease the porting of services, while keeping the desired
security, being the change of the mobile device usually more
frequent than the change of the hardware keyboard. Further-
more, testing algorithms on samples collected on different
devices would provide hints about which characteristics of the
considered interfaces, such as height and width of the
employed virtual keyboards and keys, have an effect on the
achievable recognition performance.

Beyond simply operating on the size of the employed
keyboards, it could also be worth taking more radical ap-
proaches, designing novel interfaces for mobile devices, able to
improve usability and achieving better performance in KD‐
based recognition systems. For instance, a framework named
“harmonized authentication based on thumbstrokes dynamics”
(HATS), where a custom virtual keyboard based on a circular
shape is adopted on a handheld device to let a user efficiently
typing text employing only one thumb, has been proposed in
[68]. According to the results there reported, the proposed
HATS keyboard, when typing free text on mobile devices with
both small and large touchscreens, seems guaranteeing both
higher security and usability than standard QWERTY
keyboards.

Further research is also required to properly address the
dependency of the achievable recognition performance on
the selected PINs or passwords. In addition to their lengths,
several other characteristics of the employed inputs may in
fact influence the recognition process. Differences in per-
formance achievable with either easy, strong, or logically
strong passwords have been in fact observed in [46], while a
noticeable variability of the error rates attainable for distinct
PINs having the same length has been reported in [31, 39].
The analysis of which characteristics result in better dis-
criminability would be useful to provide suggestions during

the password/PIN setup stages, thus increasing the security
that KD‐based recognition systems could guarantee. It is
worth observing that, in order to carry out such analysis, it
would be recommended to collect samples corresponding to
several distinct PINs/passwords from each involved users.
Due to the significant amount of time this kind of data
collection process would require, such approach has been
followed only in few works, such as [31, 40].

It would also be interesting to study the distinctiveness of
the KD trait. For instance, the typing behaviours of only four
out of the 12 subjects employed as legitimate users in [50] ,
and not those of the remaining eight participants, have
shown high discriminative capability. Such outcome is
particularly relevant given the fact that highly distinctive
sensors such as accelerometer, gyroscope, and orientation
have been employed in [50]. These observations may suggest
that it would be worth designing techniques allowing users to
perform proper enrolment on mobile devices, in order to
make their KD more distinctive and thus guarantee better
recognition performance. The feasibility of training subjects
in typing has been recently investigated in [69], where in-
structions have been given to 24 participants, asked to enter
passwords according to requests regarding specific aspects,
such as the temporal gap to be taken between consecutive
letters. Tests performed on recordings taken during two
sessions a week apart have shown that it is actually possible
to control typing features like flight time, hold time, and
touch area, although certain characteristics are challenging to
be modified. More in‐depth investigations on these aspects
would be beneficial for improving the typing skills of legiti-
mate users, providing also the means to achieve diversity
among the templates a user can employ in different appli-
cations. On the other side, malicious subjects could exploit
the learnt lessons to launch more effective mimicry attacks,
modifying their typing behaviour to make it resembling the
one of the target user. In order to be able to deal with such
possibility, samples of skilled forgeries from participants
having the specific purpose of imitating characteristics of
other users should be also included in the collected database.
Such approach has been actually followed in [31], yet no
significant improvements in FAR have been observed for
attackers mimicking the observed behaviour, testifying the
difficulty in copying specific typing patterns.

In order to improve the achievable recognition rates, the
feasibility of integrating KD with other behavioural biometric
traits, which could be easily captured by mobile devices
without the need for any additional hardware, could also be
investigated. It would be for instance interesting to design
recognition systems exploiting, either separately or jointly, KD
and swipe patterns [23]. These latter can be captured through
the sensors available in touchscreens, whenever a user interact
with a mobile phone to perform actions such as scrolling a
page or providing a graphical password [70]. Although
achieving worse recognition performance than KD, swipe
patterns could be in fact useful to boost the recognition rates
of a system jointly exploiting both modalities, as for example
suggested in [48, 71]. Also the feasibility of integrating systems
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based on KD with others exploiting 3D hand gesture per-
formed with mobile devices as behavioural biometric modality
might be worth to be investigated [72].

The recognition rates achievable exploiting KD on mobile
devices could also be improved through a thoughtful applica-
tion of deep learning approaches. Actually, to the best of our
knowledge, a single work has evaluated so far the effectiveness
of using CNNs to extract distinctive features from fixed‐text
inputs [34]. Recurrent networks have been instead considered
for dealing with free text in [71], yet also in this case the po-
tential of these approaches remains notably under‐explored.
Approaches employing generative models such autoencoders
or generative adversarial networks have not been applied to
KD collected on mobile devices. It has to be observed that,
due to their limited length, it is not straightforward to effi-
ciently process fixed‐length inputs such as password and PINS
with neural networks. However, given the remarkable recog-
nition rates such methods have allowed to reach in several
domains, it would be very interesting to investigate their
applicability on KD data collected on mobile devices. It has
however to be mentioned that, for a proper use of such
methods, collecting large databases with a significant number
of KD samples, recorded from many subjects, is of paramount
importance, since otherwise the network training could be
problematic.

Finally, it is worth remarking that the security of the
collected data has not been taken into account in any of the
works performing biometric recognition using KD on mobile
devices. As it is widely known, biometric data can reveal
several relevant information regarding their owners, which
could be exploited for purposes other than biometric recog-
nition, namely function creep [73]. For instance, KD could be
exploited, to a limited extent, to monitor the health of a
subject. Mood prediction of bipolar and non‐bipolar persons
has been performed in [74] analysing typing dynamics with
convolutional and recurrent deep architectures. A similar
evaluation has been also carried out in [75], where the
feasibility of inferring useful information for patients with
psychiatric disorders from their typing behaviour on mobile
phones has been investigated. Fifteen emotional states,
including confidence, hesitance, nervousness, relaxation,
sadness, and tiredness, have been estimated from typing
patterns in [67]. Also the educational level of a subject has
been predicted based on collected KD in [76]. Furthermore,
several studies have also estimated soft biometrics such as
gender, age, and handedness of subjects whose KD have been
recorded through smartphones [77]. The aforementioned
studies testify that severe privacy issues may derive from the
unauthorized access of malicious users to the samples
collected while recording KD, or to the templates derived
from it. Proper countermeasures, involving, for example, the
usage of template protection schemes [73], have to be
designed in order to implement privacy‐compliant biometric
recognition systems based on KD.

Privacy issues could also raise in case a system performing
continuous recognition based on free‐text acquisitions is
designed, since the collected data could be employed to

monitor the user level of attention and productivity. Although
this possibility represents a more dangerous threat when
dealing with systems employing KD collected through com-
puter keyboards, such issues should however be properly
considered and addressed before deploying KD‐based systems
for mobile devices in real‐world applications.

8 | CONCLUSIONS

The state of the art regarding the use of KD collected on
mobile devices has been surveyed in this paper. Specifically, an
overview about the most significant studies which have been
proposed on this topic, detailing the characteristics of the
employed datasets, the used features, the adopted classification
methods, and the achieved recognition performance, has been
here provided. On the basis of the reviewed literature, several
issues which still need to be properly addressed have been
identified, and guidelines regarding possible future research
lines have been reported.

Overall, according to the performed research, it is realistic
that biometric recognition on mobile devices can be per-
formed in real‐life applications exploiting the peculiar char-
acteristics of each user's typing patters. Being able to achieve
such goal would be highly beneficial for integrating KD‐
based recognition systems into the access control mecha-
nisms already employed when using mobile devices. Secure
recognition methods would thus allow getting access to the
devices themselves, as well as to services such as on‐line
payments, e‐commerce, e‐mail, or bank accounts, without
requiring any specific action from the user. Nonetheless,
several efforts need to be made before making the afore-
mentioned scenarios applicable in real life, since many aspects
affecting the recognition capabilities related to the typing
patterns should still be properly explored, such as the effects
of the adopted posture, the feasibility of cross‐platform
recognition, or the evaluation of the effectiveness of the
chosen inputs.
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