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ABSTRACT

Considerable interest has been recently devoted to the exploitation of brain activity as biometric identi-
fier in automatic recognition systems, with a major focus on data acquired through electroencephalog-
raphy (EEG). Several researches have in fact confirmed the presence of discriminative characteristics
within brain signals recorded while performing specific mental tasks. Yet, to make EEG-based recog-
nition appealing for practical applications, it would be highly advisable to investigate the existence
and permanence of such distinctive traits while performing several different mental tasks. In this re-
gard, the present study evaluates the feasibility of performing task-independent EEG-based biometric
recognition. A deep learning approach using siamese convolutional neural networks is employed to
extract, from the considered EEG recordings, subject-specific template representations. An extensive
set of experimental tests, performed on a multi-session database comprising EEG data acquired from
45 subjects while performing six different tasks, is employed to evaluate whether it is actually possible
to verify the identity of a subject using brain signals, regardless the performed mental task.

c© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Biometric traits employed for automatic recognition pur-
poses have been traditionally categorized into physical and be-
havioral data. Alongside these two types, cognitive biometric
traits have been recently proposed to design biometric recog-
nition systems (Revett, 2012). This latter kind of identifiers
involves the acquisition of biosignals generated by the nervous
system in response to a stimulus or during a task. Notable ex-
amples belonging to this group include the heart activity (da
Silva Luz et al., 2018), the skin electrodermal activity (Bianco
and Napoletano, 2019), and also the brain activity (Gui et al.,
2019). Resorting to these traits offers several advantages with
respect to the use of data such as fingerprint, iris, and face. In
fact, the aforementioned activities cannot be recorded at a dis-
tance, thus making it hard to covertly capture them and perform
presentation attacks. Using cognitive biometric data for recog-
nition purposes also inherently solves liveness detection issues.
Furthermore, systems relying on such traits may perform con-
tinuous recognition, and provide robustness against coercive at-
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tacks, since stress conditions can be easily detected analyzing
the collected data without requiring additional hardware.

While recognition systems based on heart activity have
been extensively investigated, with recent applications pro-
posed even for wearable devices (Pinto et al., 2018), research on
the usage of brain activity for biometric recognition purposes is
still on the rise, with several aspects to be properly investigated
and developed before brain-based biometric systems could be
deployed in practical applications. In more detail, solutions
available to monitor brain activity include functional magnetic
resonance imaging (fMRI), near infrared spectroscopy (NIRS),
positron emission tomography (PET), magnetoencephalogra-
phy (MEG), and electroencephalography (EEG). Among them,
only this latter can be considered in the context of biometric
recognition, due to the relative inexpensiveness of the associ-
ated acquisition devices and their ease of use.

EEG signals are generated by sensing, on a subject’s scalp,
the electric field whose characteristics depend on the firing of
spatially-aligned cortex pyramidal neurons. Such brain activ-
ity is commonly categorized into five main oscillatory rhythms,
namely δ (0.5 ÷ 4Hz), θ (4 ÷ 8Hz), α (8 ÷ 13Hz), β (13 ÷ 30Hz),
and γ (> 30Hz) (Niedermeyer and Da Silva, 2005). Current
EEG sensing technology is among the major issues limiting the
use of EEG signal as biometric identifiers. In fact, either wet
electrodes are used, with the consequent requirement for elec-
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trolyte gel to improve conductivity, or dry electrodes can be
employed, with their shape however causing ache for prolonged
acquisitions. In both cases, there is therefore the need to limit
the amount of channels in the recording devices, in order not
to make them too uncomfortable for the users (Pinegger et al.,
2016). Moreover, novel approaches are required to extract dis-
criminative features from the collected EEG signals, with the
aim of performing recognition achieving error rates compara-
ble with those granted by well-established biometric traits. In
this regard, it has to be remarked that the vast majority of in-
vestigations conducted in this area have focused on the search
for distinctive features in brain signals acquired according to
specific protocols, such as those involving resting states, imag-
ined movements, speech imagery, and so forth (Yang and De-
ravi, 2017). However, in order to support the exploitation of
brain signals as biometric identifier in real-life practical appli-
cations, it would be instead highly relevant to investigate the
existence of stable subject-specific characteristics in EEG sig-
nals collected while performing different mental tasks. This
is actually the scope of the present paper, which evaluates the
feasibility of performing task-independent EEG-based biomet-
ric recognition resorting to deep learning approaches. In more
detail, the contributions of the present study are the following
ones:

• the existence of EEG task-independent discriminative fea-
tures, allowing to perform EEG-based biometric recogni-
tion regardless the performed mental task, is here evalu-
ated. In order to perform such evaluation, a multi-session
database, comprising EEG data acquired from 45 subjects
while performing six different tasks during five sessions
spanning an overall period of more than one year, is here
exploited;

• in order to explicitly learn EEG characteristics stable
across the considered mental tasks, an appropriate training
strategy relying on siamese convolutional neural networks
(CNNs) is here adopted;

• the use of different models for distinct EEG channels is
here proposed, with the purpose of learning specific dis-
criminative features for each area of the brain;

• the recognition capabilities of EEG signals recorded while
performing different mental tasks are here evaluated com-
paring recordings taken at either short and long time dis-
tances between enrolment and verification, to evaluate the
longitudinal behavior of the estimated discriminative char-
acteristics;

• an analysis of the recognition performance achievable
when reducing the number of employed EEG channels, in
order to improve the usability of the proposed system, is
also performed.

The current state of the art on automatic recognition systems
using brain signals as biometric identifiers is provided in Sec-
tion 2. The approach here proposed to derive discriminative
representations from the considered EEG recordings, exploit-
ing CNNs trained with a siamese strategy, is outlined in Section
3. The recognition results achieved in tests performed in verifi-
cation modality, exploiting the availability of an EEG database

comprising samples taken from 45 subjects during five record-
ing sessions, each consisting of six different tasks, are then dis-
cussed in Section 4, while conclusions are finally drawn in Sec-
tion 5.

2. State of the Art on EEG-based Biometric Recognition

Although biometric recognition based on brain activity has
been postulated in the early ’80s (Stassen, 1980), a systematic
investigation on the use of EEG signals as biometric identifiers
has been conducted only in the last decade (Gui et al., 2019).
In order to extract discriminative information, EEG recordings
are typically first preprocessed with temporal and spatial filters
to reduce the amount of artifacts not related to brain activity,
like those associated to endogenous factors such as eye blinking
and muscular activity, or to exogenous sources such as power
supply noise (Yang and Deravi, 2017).

Traditionally, hand-crafted features are then extracted from
the obtained signals. Most of the proposed approaches rely
on representations derived by treating separately signals ac-
quired with different electrodes, resorting for instance to auto-
regressive (AR), wavelet-based, power spectral density (PSD),
or mel-frequency cepstrum coefficients (MFCCs) modeling for
each channel (Campisi and La Rocca, 2014). Even methods
estimating functional brain connectivity, therefore focusing on
temporal dependencies among EEG signals generated in dif-
ferent brain areas, have been proposed using measures such as
correlation, spectral coherence, and Granger causality to gener-
ate biometric templates from EEG data (Friston, 2011).

More recently, also deep learning approaches have been ex-
ploited to define discriminative representations of EEG signals.
Convolutional neural networks (CNNs) have been applied to
brain signals to perform recognition for the first time using a
shallow network with two layers (Ma et al., 2015). Frame-
works comprising adversarial CNNs and recurrent neural net-
works have been proposed too (Ozdenizci et al., 2019; Maio-
rana, 2020).

Regarding the performance achieved in literature, several
studies have claimed to obtain perfect recognition accuracy
when using EEG signals as biometric identifiers (Chen et al.,
2016). Unfortunately, the reliability of many of such works is
often undermined by a common misconduct, that is, the exe-
cution of experimental tests on databases comprising EEG data
collected during a single recording session for each considered
subject (Ruiz-Blondet et al., 2016). Under this scenario, the
estimated performance may depend more on session-specific
recording conditions than on individual characteristics of the
involved subjects (Ozdenizci et al., 2019). For this reason,
proper testing of an EEG-based biometric recognition system
should be instead performed using multi-session datasets, com-
paring signals recorded in different days. When such conditions
are considered, the achievable recognition rates notably worsen
with respect to tests in which data from the same session are
employed for both enrolment and recognition purposes, moti-
vating the need for longitudinal studies on EEG discriminative
capabilities (Maiorana and Campisi, 2018).

Single-session datasets have been considered in almost all
the works evaluating EEG-based task-independent recognition,
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as in (Fraschini et al., 2019) where data from the PhysioNet
database (Goldberger et al., 2000), comprising samples col-
lected from users performing 14 tasks during a single session,
have been exploited. As in (Fraschini et al., 2019), EEG repre-
sentations based on functional connectivity have been exploited
in (Wang et al., 2019), where tests have been conducted on four
tasks of the PhysioNet database, and on an in-house database
comprising single-session recordings too. Nonetheless, the re-
sults in (Fraschini et al., 2019) and (Wang et al., 2019) show a
degradation in recognition performance in cross-task scenarios,
with respect to the within-task test conditions.

Databases collected during multiple sessions have been in-
stead considered in (Kong et al., 2018) and (Kumar et al., 2019).
EEG signals from nine users performing four tasks during two
sessions have been used in the former paper, while data cap-
tured from 30 subjects performing four tasks during three ses-
sions have been exploited in the latter. However, tests in both
(Kong et al., 2018) and (Kumar et al., 2019) have been per-
formed using acquisitions from all the available sessions for
enrolment purposes, thus still adopting improper experimental
conditions.

Distinct sessions have been instead properly considered for
enrolment and recognition purposes in (Del Pozo-Banos et al.,
2018) and (Vinothkumar et al., 2018). In both these studies,
notable performance losses have been actually observed when
comparing EEG signals recorded in different sessions, in addi-
tion to the worsening due to the cross-task scenario. It has yet
to be remarked that EEG acquisitions from only five subjects,
performing five tasks in two different days, have been consid-
ered in (Del Pozo-Banos et al., 2018), while only 15 subjects
carrying out five tasks during two recording sessions have been
taken into account in (Vinothkumar et al., 2018). The number of
users available in (Del Pozo-Banos et al., 2018) and (Vinothku-
mar et al., 2018) is therefore too low, even for studies regarding
EEG-based biometric recognition, to derive meaningful conclu-
sions regarding the observed behaviors. Conversely, as it will be
detailed in Section 4, the present study has been conducted on a
much larger database, comprising EEG recordings taken from
45 subjects during a period lasting more than one year, there-
fore representing a much more reliable basis to derive mean-
ingful conclusions regarding the existence of EEG cross-task
discriminative characteristics.

It has also to be mentioned that the approaches in (Del Pozo-
Banos et al., 2018) and (Vinothkumar et al., 2018), like all
the others so far employed to investigate the existence of task-
independent characteristics in brain signals, have resorted to
hand-crafted features to generate the EEG representations em-
ployed in the proposed classifiers. A supervised deep-learning-
based approach is instead adopted in the present study, with the
aim of explicitly learning EEG characteristics stable across the
considered mental tasks, through an appropriate training strat-
egy. Specifically, as outlined in Section 3, siamese CNNs are
trained to accomplish such aim, performing biometric recogni-
tion on a multi-session and multi-task EEG database.

Furthermore, scenarios involving both short- and long-term
distances between enrolment and verification are here taken
into account, thus providing a longitudinal analysis of the em-

Fig. 1. Proposed channel-specific siamese network training.

ployed EEG discriminative characteristics. Tests aimed at ver-
ifying the effectiveness of the proposed solution when using a
limited number of EEG channels, in order to improve the us-
ability of the proposed system, are also here discussed.

3. Proposed Biometric Verification System
The approach here employed to derive discriminative fea-

tures from EEG traits stems from the method proposed in
(Maiorana, 2019), where deep learning has been applied for the
first time to brain signals for the implementation of a biomet-
ric verification system. Specifically, siamese CNNs have been
there trained over multi-session EEG data recorded in eyes-
closed (EC) resting states.

As shown in Figure 1, a siamese network uses two or more
identical subnetworks, with the same architecture and sharing
the same parameters and weights, simultaneously updated at
each step of the learning process. The loss evaluated for back-
propagation purposes depends on the Euclidean distance of the
representations generated by the employed subnetworks. In
more detail, the computed loss should be minimized trying to
lower the distance between representations derived from input
samples belonging to the same class, while increasing the dis-
tance between representations obtained from inputs belonging
to different classes. Indicating as s(1) and s(2) the samples fed to
the two subnetworks composing the considered siamese frame-
work, and as Dx(1),x(2) the Euclidean distance computed between
the generated representations x(1) and x(2), a contrastive loss
function is evaluated during the performed training as

L(x(1), x(2), y) = (1−y)
1
2

D2
x(1),x(2)+y

1
2

[max(0, d−Dx(1),x(2) ]2, (1)

being y the label associated with the considered pair of inputs,
with y = 0 for samples from the same class and y = 1 other-
wise. The margin d is employed to control which pairs with
samples from distinct classes should contribute to the loss and
the learning process.

The tests performed in (Maiorana, 2019) have highlighted
that, to define EEG templates to be used in verification modal-
ity, it is preferable to exploit siamese networks with raw time-
dependent EEG signals as inputs, rather than first extracting
hand-crafted features as suggested for identification purposes
in (Maiorana, 2020). The same approach is therefore here em-
ployed, designing an end-to-end learning process with CNNs
directly applied to the available EEG signals.

With respect to (Maiorana, 2019), an attempt at providing
greater generalization is here proposed and investigated, train-
ing distinct CNN models for each individual EEG channel, in-
stead of learning a single network for all the signals collected
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through the employed electrodes as done in (Maiorana, 2019).
This choice aims at learning discriminative characteristics pe-
culiar of each area of the brain, trying in this way to improve
the achievable recognition rates.

The processing pipeline characterizing the enrolment and ve-
rification stages of the proposed EEG-based recognition system
is detailed in the following Section 3.1.

3.1. Employed Processing Pipeline

It is assumed that EEG data are collected using C electrodes
placed on the subjects’ scalp. Given the outcomes of litera-
ture researches such as (Maiorana et al., 2016a) and (Maiorana
and Campisi, 2018), EEG signals are filtered during preprocess-
ing to retain the frequencies which have shown to contain the
most discriminative and permanent EEG content, that is, the
subband [α, β] = 8 ÷ 30Hz. Without discarding significant in-
formation, thanks to the previous filtering operation and given
the Nyquist–Shannon sampling theorem, a downsampling to
S = 64Hz is then performed to reduce the computational com-
plexity of the subsequent processing. Lowering the sampling
frequency in fact allows to define shorter sequences as inputs
to the employed CNNs, as detailed in the following. A spatial
common average referencing (CAR) filter is also employed to
limit the effects of possible incorrect reference positioning. No
further preprocessing is applied to the EEG signals employed
in the tests reported in the following. Actually, techniques de-
fined to remove artifacts from EEG recordings (Maiorana et al.,
2016b) have been considered during the performed tests, yet no
significant difference in recognition performance has been ob-
tained when applying them to the employed signals, and they
have been consequently omitted from the proposed system in
order to reduce the required computational cost.

Following the approaches already employed in several stud-
ies on EEG-based biometric recognition (Maiorana et al.,
2016a; Maiorana and Campisi, 2018), the obtained signals are
then segmented into frames lasting H = 5s, a duration which
should guarantee a proper trade-off between the requirement
for having a manageable sample size, and the need for having
in each frame enough information for reliably estimating sta-
tionary features. An 80% overlap factor between consecutive
frames is also employed to generate a number of samples al-
lowing to properly train the employed CNNs. A single frame
is considered as either an enrolment or verification sample in
the proposed system, and comprises C temporal sequences sc,
c = 1, . . . ,C, each having size 1×S ·H = 1×320. The obtained
unidimensional signals are fed as input to C distinct CNNs,
sharing the same framework reported in Table 1, yet trained
over data recorded by different electrodes to capture channel-
specific discriminative characteristics. The employed network
is the one giving the best results among a large set of tested
configurations, including those in (Maiorana, 2020), where dif-
ferent choices have been made regarding the size of the em-
ployed convolutional filters and the adoption of max-pooling
and dropout (DO) layers. Nonetheless, no claim of optimality
is here made. A set of C representations xc, c = 1, . . . ,C, is
therefore derived for each EEG frame.

The verification process is carried out by separately com-
paring corresponding channels of frames collected during en-

Table 1. Employed CNN. Conv layers comprise a batch normalization step.

# Layer Filter Pad Input Output
L1 Conv (1×5×1)×16 [0,2] 1×320×1 1×320×16
L2 ReLu - - 1×320×16 1×320×16
L3 MP 1×3 - 1×320×16 1×106×16
L4 Conv (1×5×16)×32 [0,2] 1×106×16 1×106×32
L5 ReLu - - 1×106×32 1×106×32
L6 MP 1×3 - 1×106×32 1×35×32
L7 Conv (1×3×32)×64 - 1×35×32 1×33×64
L8 Relu - - 1×33×64 1×33×64
L9 MP 1×3 - 1×33×64 1×11×64
L10 Conv (1×3×64)×128 - 1×11×64 1×9×128
L11 ReLu - - 1×9×128 1×9×128
L12 MP 1×3 - 1×9×128 1×3×128
L13 DO - - 1×1×128 1×3×128
L14 Conv (1×3×128)×256 - 1×3×128 1×1×256

rolment and authentication phases, thus generating C different
scores for each verification probe. Score fusion is then applied
to generate a single outcome for the verification process of a
frame. Thresholding is finally performed to take a decision on
the identity of the subject whose EEG frame has been analyzed.

Comparison scores are generated employing, for each sub-
ject, models trained with one-class support vector machines
(SVMs) over representations of each channel derived from
enrolment frames, instead of computing Euclidean distances
between enrolment and verification samples as in (Maiorana,
2019). It is worth remarking that the proposed processing
pipeline has been designed in order to make the entire proce-
dure, including the feature extraction process and the struc-
ture of the employed CNNs, independent on the number of
employed channels C, thus leaving the possibility of keeping
the recognition process unchanged as the number of employed
electrodes varies.

4. Experimental Tests

In order to evaluate whether task-independent EEG discrimi-
native characteristics exist, and whether the proposed approach
based on siamese CNNs could learn them, an extensive set of
experimental tests has been carried out on the largest multi-
session dataset, in terms of considered subjects and employed
elicitation protocols, ever exploited to perform EEG-based bio-
metric recognition. Specifically, the database here considered
has been also used in (Maiorana et al., 2016a), (Maiorana and
Campisi, 2018), and (Maiorana, 2020), and comprises EEG
data collected at an original sampling rate of 256 Hz using a
GALILEO BE Light amplifier with 19 wet electrodes placed
according to the 10-20 International system, shown in Figure 2.
Five different recording sessions, indicated as Ri, i = 1, . . . , 5,
have been performed for each of 45 healthy subjects, taking
EEG acquisitions with the involved subjects comfortably seated
on a chair in a quiet and dimly lit room, in order to reduce arti-
facts due to stress or distractions. While the first three sessions
have been taken in the time span of a month, an average of
six and fifteen months have been then passed before the fourth
and fifth sessions, respectively, covering an overall period of
more than one year between the first and the last recording ses-
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Fig. 2. The 10-20 International system seen from left (A) and above the
head (B). The letters F, T, C, P, and O stand for frontal, temporal, cen-
tral, parietal, and occipital lobes. (Jaakko Malmivuo and Robert Plonsey,
Bioelectromagnetism, Oxford University Press, 1995, WEB version).

sions. Detailed information about the temporal distributions of
the performed acquisitions are given in (Maiorana, 2020).

In (Maiorana et al., 2016a) and (Maiorana and Campisi,
2018) it has been shown that, although aging actually affects
EEG characteristics, negligible consequences on recognition
performance are observed when comparing signals captured
within time lapses in the order of a month, while relevant ef-
fects are observable for larger periods. The availability of multi-
ple recording sessions has been therefore exploited performing
tests comparing EEG signals captured at either short time dis-
tance (STD) and long time distance (LTD). The former scenario
is referred to comparisons among data captured at a time dis-
tance lower than one month, the latter one at distances of about
15 months. Furthermore, the usefulness of performing enrol-
ment considering EEG data captured in more than one occasion
has been also analyzed, computing recognition rates achievable
with both single-session enrolment (SSE) and multiple-session
enrolment (MSE). The experimental results referred to each
of the four considered scenarios have been obtained perform-
ing comparisons between enrolment and verification data taken
from the sessions summarized in Table 2. For instance, the
recognition performance achievable when comparing signals
taken at a long time distance, and using multiple sessions for
enrolment, has been estimated averaging the results obtained
when comparing data from R1 and R2 with recordings in R5,
data in R1 and R3 with those in R5, and signals from R2 and R3
with acquisitions from R5.

Each subject has performed six different mental tasks dur-
ing each recording session, stimulating different brain activa-
tion patterns (Niedermeyer and Da Silva, 2005):
• resting state with eyes-closed (EC), tipically correspond-

ing to a predominant α contribution in the parieto-occipital
region of the scalp;

• resting state with eyes-open (EO), characterized by α
desynchronization and increase in θ power with respect to
EC;

• motor imagery (MI), with subjects asked to perform imag-
inary movements of left and right arms and legs;

• speech imagery (SI), with subjects asked to mentally re-
produce the sound of a vowel observed on the screen. Both
SI and MI tasks involve increased oscillatory activity in β
band by the motor cortex in the centro-lateral side of the
scalp;

• visual stimulation (VS), during which eight different geo-
metric shapes are randomly shown on a screen;

Table 2. Data and comparisons evaluated in each considered test condition.

Time Enrolment Enrolment Verification
Distance Type Session(s) Session

STD
SSE

R1 R2

R1 R3

R2 R3

MSE R1, R2 R3

LTD

SSE
R1 R5

R2 R5

R3 R5

MSE
R1, R2 R5

R1, R3 R5

R2, R3 R5

• mathematical calculation (MC), with subjects perform-
ing mathematical operations such as sums and differ-
ences. Both VS and MC implies greater involvement of
the frontal lobe, with an increase in δ, β, and γ bands.

The acquired EEG data are treated as continuous streams to
which the processing described in Section 3.1 is applied.

Tests have been first performed to verify the superiority of
the proposed deep learning approach for EEG-based biomet-
ric verification over the use of hand-crafted features, as well
as the effectiveness of looking for area-specific discriminative
characteristics by separately modeling different channels, as de-
scribed in Section 4.1. The recognition rates achievable under
cross-task recognition scenarios are then outlined in Section
4.2, while Section 4.3 reports the results of a usability analy-
sis, where the number of employed channels is limited in order
to assess the recognition performance attainable when trying to
reduce subject inconvenience.

4.1. Effectiveness of Channel-specific Modeling

In order to properly test the proposed verification system
based on siamese networks in open-set conditions, a cross-
validation experimental design has been carried out evaluating
each considered scenario by dividing, for five iterations, the
available subjects into two disjoint subsets: a training dataset
comprising 30 subjects, and a testing dataset with the remain-
ing 15 subjects, upon which recognition rates are evaluated.

To represent state-of-the-art EEG recognition systems based
on hand-crafted features, fusion of AR and MFCC representa-
tions have been exploited as in (Maiorana and Campisi, 2018).
Table 3 reports the recognition performance obtained on testing
datasets when resorting to hand-crafted representations, to deep
representations obtained as in (Maiorana, 2019), and to the ap-
proach here proposed, relying on separate CNN modeling for
each of the C = 19 available channels, for all the six considered
mental tasks. The results in Table 3 have been therefore ob-
tained training CNNs on EEG data recorded while performing
a single task, and using the obtained models to generate repre-
sentations from signals acquired in the same conditions.

In more detail, siamese training has been performed using
pairs of EEG frames taken, for each subject and for each con-
sidered protocol, from recordings of different sessions. Specif-
ically, the first three sessions of each user, together with the
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Table 3. Performance (EER, in %) comparison, in task-dependent con-
ditions with C = 19, between EEG-based systems using representations
based on: (a): hand-crafted features; (b): features learned using the same
CNN model for all the employed channels as in (Maiorana, 2019); (c): fea-
tures learned using channel-specific CNN models as here proposed. A sin-
gle frame lasting 5s is used as verification probe. Best results highlighted
in bold.

Protocol
Test Eyes- Eyes- Motor Speech Visual Mathemat.

Condition closed open imagery imagery stimulation calculation
(EC) (EO) (MI) (SI) (VS) (MC)

(a): Hand-crafted representations (AR+MFCC)

SSE STD 15.2 ± 0.3 21.4 ± 0.4 20.3 ± 0.4 18.7 ± 0.3 20.7 ± 0.4 20.7 ± 0.5
LTD 17.5 ± 0.2 25.8 ± 0.5 23.7 ± 0.4 23.5 ± 0.4 20.9 ± 0.4 23.1 ± 0.5

MSE STD 12.1 ± 0.2 16.8 ± 0.3 16.7 ± 0.3 16.0 ± 0.3 17.6 ± 0.4 17.1 ± 0.4
LTD 15.6 ± 0.2 22.9 ± 0.4 22.4 ± 0.5 21.7 ± 0.4 19.4 ± 0.3 21.0 ± 0.4

(b): Deep representations obtained as in (Maiorana, 2019)

SSE STD 13.5 ± 0.3 13.1 ± 0.3 12.8 ± 0.3 12.6 ± 0.3 14.2 ± 0.3 14.4 ± 0.3
LTD 14.4 ± 0.3 15.4 ± 0.3 15.9 ± 0.3 16.1 ± 0.4 14.3 ± 0.3 14.6 ± 0.3

MSE STD 9.6 ± 0.2 10.3 ± 0.2 11.2 ± 0.3 11.2 ± 0.3 11.6 ± 0.3 11.3 ± 0.2
LTD 10.1 ± 0.2 13.1 ± 0.3 15.2 ± 0.3 14.8 ± 0.3 13.5 ± 0.3 13.7 ± 0.3

(c): Deep representations with channel-specific CNN modeling as here proposed

SSE STD 8.1 ± 0.2 6.8 ± 0.2 4.8 ± 0.3 5.1 ± 0.3 7.0 ± 0.3 7.2 ± 0.3
LTD 8.4 ± 0.2 10.2 ± 0.3 10.7 ± 0.3 10.4 ± 0.3 8.2 ± 0.3 8.0 ± 0.3

MSE STD 4.8 ± 0.2 4.8 ± 0.2 5.2 ± 0.2 5.1 ± 0.2 5.2 ± 0.2 5.1 ± 0.2
LTD 5.9 ± 0.3 7.2 ± 0.3 9.0 ± 0.3 8.7 ± 0.3 6.2 ± 0.3 6.3 ± 0.3

fifth one, have been used to define the pairs used for train-
ing. The fourth session has been instead employed for valida-
tion purposes, creating pairs with the first three ones. For each
pair of frames belonging to the same user, two additional pairs
with frames from distinct subjects have been employed during
siamese network training.

Stochastic gradient descend with momentum (SGDM),
batches with size 128, learning rate at 0.001, and weight decay
at 0.005, have been employed to train the considered siamese
network using the MatConvNet deep learning framework, (Ve-
valdi and Lenc, 2015), with an Nvidia GeForce GTX GPU.

As already shown in (Maiorana, 2019) for the EC protocol
only, the reported equal error rates (EERs) show that using
EEG deep representations learned with end-to-end siamese net-
works guarantees recognition results better than those achiev-
able exploiting hand-crafted features. With respect to (Maio-
rana, 2019), a further improvement is here obtained performing
channel-specific CNN modeling. Learning different discrimi-
native features for distinct areas of the brain allows to notably
reduce error rates, with a performance percentage improvement
of up to about 40%. It is therefore highly recommendable to
process the available EEG channels separately when trying to
learn discriminative representations for recognition purposes.

The proposed approach allows reaching quite low EERs, es-
pecially for multiple-session enrolment conditions. It is in fact
possible to perform verification with EER at about 5% using
EEG recognition probes lasting only 5s, taken at a time distance
of one month from enrolment, for several acquisition protocols.
Interestingly, thanks to the employed siamese approach and the
comparison of pairs from different sessions during training, the
deep representations here learned also allows to notably reduce

Table 4. Performance (EER, in %) comparison, in task-independent con-
ditions with C = 19, between EEG-based systems using representations
based on: (a): hand-crafted features; (b): features learned using channel-
specific CNN models, with training performed on EEG signals from a sin-
gle protocol; (c): features learned using channel-specific CNN models, with
training performed on EEG signals from four different protocols. A single
frame lasting 5s is used as verification probe. Best results highlighted in
bold.

Test Single-task Multiple-task enrolment
Condition enrolment Cross-task verification Within-task verification

(a): Hand-crafted representations (AR+MFCC)

SSE STD 30.6 ± 0.6 18.5 ± 0.4 18.2 ± 0.3
LTD 22.4 ± 0.4 20.8 ± 0.4 20.5 ± 0.4

MSE STD 28.5 ± 0.5 15.7 ± 0.3 15.3 ± 0.3
LTD 31.5 ± 0.5 19.1 ± 0.4 18.8 ± 0.3

(b): Deep representations learned on EEG signals from a single protocol

SSE STD 19.3 ± 0.4 14.8 ± 0.3 13.2 ± 0.3
LTD 21.2 ± 0.4 15.6 ± 0.3 15.1 ± 0.3

MSE STD 16.9 ± 0.3 12.0 ± 0.3 10.5 ± 0.3
LTD 19.4 ± 0.3 13.6 ± 0.3 13.1 ± 0.3

(c): Deep representations learned on EEG signals from multiple protocols

SSE STD 14.4 ± 0.4 12.5 ± 0.3 9.8 ± 0.3
LTD 16.4 ± 0.4 14.0 ± 0.3 12.9 ± 0.3

MSE STD 11.1 ± 0.3 9.7 ± 0.3 7.5 ± 0.2
LTD 13.5 ± 0.3 12.0 ± 0.3 10.5 ± 0.3

both the performance gap between recognition rates achievable
in EC conditions and using other protocols, as well as the gap
between results obtained in STD and LTD conditions, with re-
spect to the use of hand-crafted features.

4.2. Task-Independent Recognition

Several tests have been carried out to properly evaluate the
feasibility of task-independent EEG-based biometric recogni-
tion. Specifically, scenarios in which users’ enrolment is car-
ried out recording EEG signals during either a single or multiple
tasks have been taken into account. In the former case, verifi-
cation is performed in cross-task conditions, using EEG signals
recorded with protocols different than the enrolment one. The
multi-protocol registration scenario has been instead analyzed
performing several iterations in which, each time, four out of
the six available protocols have been employed for enrolment
purposes. Verification has been then performed using:

• EEG signals recorded according to the two tasks not con-
sidered during enrolment. As for the considered single-
protocol enrolment condition, this cross-task scenario has
been evaluated to assess the feasibility of recognizing a
subject while performing mental tasks which have not
been taken into account at enrolment stage;
• EEG signals recorded with the same four protocols em-

ployed for users’ enrolment. This within-task scenario has
been evaluated to investigate the performance achievable
when performing enrolment recording signals in all the
conditions which could be faced during verification.

The results reported in Table 4 have been obtained consider-
ing three different kinds of EEG models:
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Table 5. Average EER (in %), in cross-task experimental conditions and using deep representations learned on EEG signals from multiple protocols, for
each channel. Best channels highlighted in bold. A single frame lasting 5s is used as verification probe.

Test Channel
Condition F1 F2 F3 F4 F7 F8 FZ C3 C4 CZ T3 T4 T5 T6 P3 P4 PZ O1 O2

MSE STD 26.1 27.5 24.77 26.0 29.3 27.3 21.7 21.0 22.3 23.2 28.6 26.2 24.7 26.7 21.0 19.7 21.1 22.4 22.7
LTD 27.8 29.0 28.2 27.3 32.2 31.6 24.3 24.3 24.1 23.7 29.1 27.5 27.2 27.1 22.3 22.0 22.4 23.5 25.0

• hand-crafted representations based on fusion of AR and
MFCC features as in (Maiorana and Campisi, 2018);

• deep representations defined through the proposed
channel-specific siamese CNN model, using EEG data ac-
quired according to a single protocol, as in the Section 4.1;

• deep representations defined according to the channel-
specific approach here proposed, exploiting EEG data
recorded with four different protocols. At each iteration,
the considered protocols are the same exploited in the
multi-enrolment scenarios. Obviously, given the open-set
testing conditions here evaluated, subjects other than those
employed to estimate recognition performance have been
used for network training. It is worth remarking that gen-
uine pairs of EEG frames employed to train the proposed
siamese networks have been defined taking samples re-
lated both to different recording sessions, as in Section 4.1,
as well as to different acquisition protocols. The network
has been thus forced to explicitly learn task-independent
EEG discriminative characteristics.

From the achieved performance it is possible to observe that
performing task-independent EEG-based recognition relying
on hand-crafted features is really arduous. High error rates are
in fact obtained even in case of multiple-protocol enrolment,
with further worsening when EEG data recorded with a single
protocol are used for enrolment.

Also the results obtained when learning EEG representations
using a single protocol during network training are not satisfac-
tory. It can be noticed that enrolling a subject using a protocol,
and performing verification with a different one, involves a no-
table performance worsening with respect to the exploitation
of the same task in both phases, as done for the tests summa-
rized in Table 3. Yet, considering more than a single protocol
during enrolment may improve the achievable recognition per-
formance: considering for instance the comparison of EEG sig-
nals taken at a short time distance, the achievable EER improves
from 16.9% for single-session enrolment conditions, to 12.0%
using data from multiple sessions for enrolment. As expected,
performing verification on EEG signals acquired performing
the same tasks considered during enrolment further improves
the obtained results, with an EER at 10.5% in the aforemen-
tioned conditions.

The most interesting results have been achieved when train-
ing the proposed channel-specific siamese networks with EEG
signals acquired according to distinct protocols. Such approach
allows notably improving the recognition performance attain-
able in both single-protocol and multiple-protocol enrolment
conditions, being for instance possible to respectively achieve
EERs at 11.1% and 9.7% in {MSE,STD} scenario, when per-
forming verification using EEG signals recorded with protocols

other than those acquired during enrolment. The performed
siamese training therefore actually allows defining EEG repre-
sentations containing task-independent discriminative informa-
tion. It is also worth observing that performing verification ex-
ploiting EEG signals acquired with the same protocols consid-
ered during enrolment, and resorting to representations learned
on the same tasks, allows achieving the best EERs, obtaining
for instance a 7.5% in the {MSE,STD} scenario.

The obtained results suggests that, in order to guarantee the
best possible recognition rates, it would be advisable to train
neural networks employing EEG signals acquired in as many
conditions as possible, and applying the derived representations
to EEG data recorded during as many tasks as possible during
users’ enrolment too.

4.3. Improving Usability: Channels Reduction

Further tests have been carried out to investigate the feasibil-
ity of performing EEG-based biometric recognition while tak-
ing into account usability issues. Specifically, given that the
proposed approach separately processes different EEG chan-
nels with dedicated CNNs, the possibility of reducing the em-
ployed channels while guaranteeing proper recognition rates
has been evaluated. Table 5 reports, for each individual channel,
the EERs achieved when comparing EEG signals at both short
and long time distances, adopting deep representations learned
on EEG data captured with four different protocols, using mul-
tiple enrolment sessions with each of them comprising four pro-
tocols, and performing verification with EEG signals recorded
during tasks other than those employed during enrolment, as in
the cross-task verification scenario of Table 4(c). The obtained
results are significantly consistent with the analysis conducted
in (Maiorana and Campisi, 2018). The best recognition rates
have been here achieved exploiting a subset of four channels
comprising the {CZ , PZ , P3, P4} positions. Relevant discri-
minative capabilities are also exposed by the channels in the
{FZ ,C3,C4,O1,O1} subset. The major difference, compared to
the results in (Maiorana and Campisi, 2018) where hand-crafted
representations have been considered, lies in the greater discri-
minative capability observed in channels C3 and C4, with re-
spect to F3 and F4, preferred in (Maiorana and Campisi, 2018).
Channels F7 and F8 instead remain among the least preferable.

The behaviors achievable for verification phases with in-
creasing duration, fusing the scores computed for each frame,
are then shown in Figure 3. The reported plots refer to cross-
task verification scenarios with enrolment data captured at mul-
tiple sessions (MSE), each time considering more than a single
protocol, deep representations learned on EEG data captured
with four different protocols, and both STD and LTD between
enrolment and verification. The obtained results show that us-
ing the C = 9 best channels guarantees the same recognition
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Fig. 3. Temporal behavior of the EER achievable in cross-task comparisons
with different number of employed channels (a): STD, (b): LTD.

results achievable using all the C = 19 available ones. Further
reducing the employed signals to only C = 4 channels involve
a performance worsening, with EER in cross-task conditions
below 10% achievable when using probe EEG samples lasting
at least 15s in STD comparisons, and exploiting at least 21s of
EEG signals under LTD scenarios.

5. Conclusions

The feasibility of performing task-independent EEG-based
biometric recognition has been evaluated in this paper. A multi-
session and multi-protocol database comprising EEG record-
ings from 45 subjects has been employed to train channel-
specific CNNs, and test the discriminative capability of the de-
rived templates on test datasets disjoint from the training ones.
The employed siamese training strategy has allowed to learn
EEG representations which can be therefore employed to per-
form EEG-based biometric verification under cross-task condi-
tions, comparing EEG recordings taken at time distances even
greater than one year. An analysis of the recognition perfor-
mance achievable when reducing the number of the employed
electrodes, with the aim of improving the usability of EEG-
based biometric systems, has been also conducted.

The performed tests have highlighted the importance of em-
ploying deep learning approaches to learn EEG representations
invariant with respect to the performed mental tasks. Further
studies, focusing for instance on generative adversarial net-
works or autoencoders to model EEG signals, are however
needed to improve the achievable recognition rates.
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