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ABSTRACT
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Thanks to their ability to monitor physical activity and health-related parameters, weara-

ble devices are becoming more and more popular. In addition to what they already offer,
an interesting capability achievable through such devices is biometric recognition. The
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physiological traits recorded by wearable devices may in fact possess distinctive proper-

ties which could allow to recognize their legitimate users, and detect unauthorized usage.

Keywords: Biometrics, Wearable De-
vices

In this paper, the most recent advances accomplished in this field are reviewed, and a crit-
ical analysis on the current state of the art, as well as on the issues still open, is provided.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

The global market of wearable technology is rapidly expand-
ing, with a compound annual growth rate (CAGR) of 12%
(Ometov et al., 2021). Earphones, wristbands and smartwatches
are the most popular of these devices, with headbands, chest-
bands, goggles and smart clothing also spreading. The interest
in these tools is mainly due to the possibility of using them
as activity trackers, monitoring the acquired data for fitness
or health purposes. Furthermore, thanks to the possibility of
integrating computing and communication capabilities within
them, wearable devices can be used to exchange or share data
with other equipment in an Internet of Things (IoT) framework,
thus enabling value-added services such as smart payment.

In addition to the ways in which wearable technologies are
currently employed in real-life scenarios, it has also recently
been proposed to use them to perform automatic biometric
recognition. Such possibility relies on the ability of weara-
ble devices to capture several physical, behavioral or cognitive
traits, from which distinctive features can be extracted and used
to discriminate legitimate from unauthorized subjects.

In more detail, wearable instruments can be for instance em-
ployed to capture biometric data from subjects other than those
who wear them. As an example, this is the case of face-based
recognition systems relying on body-worn cameras (BWC), and
employed for surveillance, situational awareness, or law en-
forcement purposes (Almadan and Rattani, 2021). It has yet to
be noted that this kind of use of wearable sensors can incur pri-
vacy violations, as the interested subjects may not be aware or
may not want to be recorded, and could be therefore employed
only by certain categories of subjects, such as law officers, and

**Corresponding author: Tel.: +39 0657337365
e-mail: emanuele.maiorana@uniroma3. it (Emanuele Maiorana )

under specific regulations'.

On the other hand, a much more extensive and diversified
use could be achieved by designing biometric systems that em-
ploy wearable sensors to recognize their own wearers. Under
this framework, the traits of the considered subjects could be
collected anywhere and anytime, without asking the interested
users to interact with specific fixed infrastructures as in tradi-
tional desktop recognition systems, granting a convenient and
user-friendly acquisition procedure. Collected data could be
then either processed within the employed device, or transmit-
ted to a server where the recognition process have to be car-
ried out. Wearable devices could in fact autonomously dialogue
with interconnected systems to allow their users physical access
to certain areas or goods, or logical access to specific services.
Such possibility could enable the design of novel applications
or the improvement of existing ones, such as the recognition of
the approaching owner of a car without the need for keys, or
the authentication of the applicant for an electronic payment.In
addition to a greater ease of use with respect to standard desk-
top biometric systems, recognition approaches relying on wea-
rable devices could also guarantee improved security, because
the physiological traits recorded by wearable sensors typically
cannot be captured at a distance, being therefore hard to steal
and replicate, and inherently provide liveness detection.

In order to shed light on the state of the art of biometric sys-
tems using wearable devices to recognize their owners, this pa-
per covers the most recent advances on the considered topic,
and analyzes the associated open issues. An analogous survey
has been presented by Blasco et al. (2016), where contributions
on wearable biometrics up to 2015 have been categorized using
a taxonomy based on the origin and type of the considered
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traits, the location of the employed sensors, and the ability to
perform continuous recognition. The present contribution up-
dates and improves (Blasco et al., 2016) in the following terms:

e it covers in Section 2 all the biometric traits that can be
recorded through wearable devices, and have been pro-
posed till now to recognize their wearer, with half of the
mentioned papers published in the past two years. In more
detail, a major emphasis is given to studies carried out
on data collected with prototypes or commercial off-the-
shelf wearable devices, rather than to evaluations relying
on medical-grade equipment. This choice is deliberately
taken to focus on works where scenarios similar to real-life
contexts, in terms of cost of the employed devices and con-
ditions of the involved users, have been taken into account.
It is worth remarking that measurements taken through
consumer wearable devices are typically not as accurate
as those attainable using instruments specifically designed
for medical purposes, with consequences on the achiev-
able performance (Bai et al., 2021). The results obtained in
works relying on commercial wearable devices are there-
fore more indicative, with respect to those exploiting me-
dical tools, of the actual recognition capabilities that can
be attained in potential practical applications;

e it performs a critical evaluation of the current state of
the art on wearable biometrics, analyzing in Section 3
the technology readiness level, expressed in terms of rel-
evant properties of biometric recognition systems, of the
approaches presented so far in literature;

e it suggests, in Section 4, aspects and research directions
which should be investigated in the future to fully uncover
the potential of biometric recognition relying on wearable
devices for real-world applications.

It is worth mentioning that other surveys have dealt with the
use of wearable devices for biometric recognition, as in (Sun-
dararajan et al., 2019) where, however, aspects related to system
networking, rather than on recognition approaches, have been
mainly considered. General health-related sensing devices, not
necessarily employed for biometric purposes, have been treated
by Khan et al. (2020). Lastly, Liu et al. (2021) have reported a
list of usable computational techniques, rather than specific ap-
proaches for biometric recognition, and did not mention some
important biometric traits such as electrodermal activity (EDA),
as well as relevant characteristics of the exploited databases.

2. Related Works

Biometric traits recordable by wearable devices and em-
ployed to perform recognition only occasionally, i.e., at specific
moments, are listed in Section 2.1. Section 2.2 instead reports
the approaches allowing to perform continuous recognition. For
both classes, a categorization depending on the source of the
exploited distinctive information is adopted. For each conside-
red trait, the types of sensors used for its acquisition, namely
electrical, optical, acoustic, chemical, or inertial, are specified.
Table 1 summarizes the surveyed studies.

2.1. Occasional Recognition

The traits which can be employed for biometric recognition
only while the involved subjects perform a specific activity, and
those which cannot be acquired continuously due to limitations
of current technology, are reviewed in this section.

2.1.1. Behaviour
The first wearable devices proposed to perform biometric

recognition are inertial measurement units (IMUs) such as ac-
celerometers and gyroscopes, worn by subjects while carry-
ing out specific tasks. Gait is the most commonly investi-
gated activity, with IMUs placed on arms, wrists, hips, thighs,
and ankles (De Marsico et al., 2019). In addition to kine-
matic aspects, also kinetic information has been recently ex-
ploited, using custom insoles to measure the applied forces
(Ivanov et al., 2020). Other exploited activities comprise typing
(Rahman et al., 2020) and handwriting (Griswold-Steiner et al.,
2019). IMUs have been also used to recognize people while
executing generic gestures (Yoneda and Weiss, 2017), observ-
ing that activities involving large body movements are less dis-
tinctive, with respect to those requiring little body movements
(Elkader et al., 2018). Obviously, all such approaches cannot
be performed in the absence of any movement.

2.1.2. Voice

Recognizing people using their voice is an activity often
performed by humans, and also one of the approaches most
commonly adopted in automatic authentication systems. The
availability of microphones in wearable devices such as smart
glasses can be exploited to recognize who wears them as in
(Peng et al., 2017), where the recognition performance achiev-
able with either voice or gestures have been compared.

2.1.3. Muscle
Wearable devices can be exploited to detect, at the skin sur-

face, the electric potential generated by cells in skeletal mus-
cles, when activated by external or neurological stimuli. The
collected signal, that is, the electromyogram (EMG), can be ex-
ploited to perform biometric recognition. A custom armband
has been employed in (Raurale et al., 2021) to capture such
electrical signals, and to recognize subjects performing specific
gestures. It is also possible to sense the activity related to iso-
metric contractions of finger muscles, without any observable
gesture, as proposed by Jiang et al. (2021).

2.1.4. Fingerprint

Fingerprint is the trait most commonly employed for desktop
and mobile biometric recognition, and it can also be captured by
commercial wristbands with capacitive scanners such as Nymi?
and Flywallet®. Yet, the employed paradigm requires users to
touch the device while being recognized, with authentication
validity then lasting as long as the wristband is worn.

2.1.5. Vein
Commercial products such as Biowatch* have been designed

to capture wrist subcutaneous vein structures. A near-infrared
(NIR) illuminator and a NIR camera are needed to acquire vein
pattern images (Uhl et al., 2020). Limitations of current imag-
ing technology allows to take proper recordings only when the
optical sensor is far enough from the wrist. The recognition
process can be thus performed only when the device is ini-
tially worn. Hence, although in principle continuous recogni-
tion could be achieved collecting vein patterns with wearable
devices, solutions that can do that have yet to be developed.
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Table 1: Summary of state-of-the-art approaches using biometric traits acquired through wearable devices for automatic people recognition.

Recognition .. . Database N Multiple Time for Recognition Performance
Origin Trait Paper . . Device . . Feature Comparator .
Type Subjects  Sessions Release conditions recognition Modality EER/HTER CIR
Gait De Marsico et al. (2019) 175 2 in 6 months Private Commercial No 5 steps Time signal DTW OS Ident. & Ver. 8.3% 75.2%
Ivanov et al. (2020) 59 1 Private Prototype No 15s Learned CNN CS Identification - 93.3%
Behavior Typing Rahman et al. (2020) 49 1 Public® Commercial No 10s Statistical MLP CS Verification 6.9% -
Occasional Handwriting Griswold-Steiner et al. (2019) 53 1 Private Commercial ~ No 250s Learned CNN+RNN CS Verification 7.8% -
Gesture Yoneda and Weiss (2017) 18 1 Private Commercial ~ Yes 50s Statistical RF CS Id., OS Ver. 15.3% 88.3%
Voice Speech Peng et al. (2017) 32 1 Private Commercial No 1 command MFCC SVM CS Verification 4.9% -
Muscle EMG Raurale et al. (2021) 5 4 in 4 weeks Private Prototype Yes 155 Statistical MLP CS Verification 6.0% -
Jiang et al. (2021) 22 3in 9 days Private Prototype No 3s Statistical SVM CS Verification 14.9% -
Ye et al. (2011) 5 over 6 months Private Commercial ~ Yes 6 heartbeats Wavelet SVM CS Identification 70-100%
ECG Pourbabaee et al. (2018) 33 over 6 weeks Private Commercial ~ Yes 10 heartbeats Learned CNN CS Identification - 95.9%
Chandrashekhar et al. (2020) 90 1 Public® Commercial ~ Yes 1 heartbeat MFCC RF CS Ident. & Ver. 1% 99%
Lehmann and Buschek (2020) 20 6 in 6 days Private Commercial  Yes 3 heartbeats Statistical RF CS Verification 21.9% -
Luque et al. (2018) 43 1 Private Prototype No Is Learned CNN OS Verification 10.0%
Sancho et al. (2018) 56 2in 2 days Public Prototype No 30 hearbeats Time signal L2 dist. OS Verification 21.5% -
Heart Cao et al. (2020) 7 6 in 50 days Private Prototype Yes 4 heartbeats Statistical RF CS Identification - 90-97%
PPG Donida Labati et al. (2020) 42 1 Public Prototype No 20s Spectrogram SVM CS Ident. & Ver. 7.0% 94.8%
Retsinas et al. (2020) 20 > 20 days Public” Commercial ~ Yes 10 min Learned CNN CS Identification - 55.8%
Lee et al. (2020) 12 4 in 4 days Public0 Prototype No 8s Learned CNN CS Identification 95.7%
Hwang et al. (2021) 100 3in 17 days Public!T Prototype  No 20 heartbeats Learned CNN+RNN _ CS Identification B 87.1%
Yadav et al. (2021) 32 1 PublicTT- TZPrototype Yes 8 heartbeats Wavelet LDA CS Verification 2.61% -
. PCG Spadaccini and Beritelli (2013) 206 1 PublicT3 Prototype No 4s PSD GMM CS Verification 13.6% -
Continuous Cheng et al. (2020) 40 1 Private Prototype No 1 heartbeat Statistical L2 dist. CS Identification - 97.5%
SCG, GCG Maiorana and Massaroni (2021) 10 1 Private Commercial  Yes 5s Spectrogram CNN CS Identification - 99.9%
Respiration BR Chauhan et al. (2017) 10 3in 7 days Private Commercial  Yes 1 breath GFCC GMM CS Verification 5-15% -
Raji et al. (2020) 10 1 Private Prototype Yes 1 min Statistical MLP CS Identification - 99.8%
Chuang et al. (2013) 15 1 Private Commercial ~ Yes 5s Time signal Cos. dist. OS Verification 32.2% -
Brain EEG Nakamura et al. (2018) 15 2in 15 days Private Prototype No 60 s PSD, AR Cos. dist. OS Verification 17.2%
Arnau-Gonzalez et al. (2021) 21 3 in 2 weeks Public’®  Commercial Yes 5s MFCC, AR HMM OS Verification 26.2%
Eye Iris Li and Huang (2017) 10 1 Private Prototype No 10 pictures Gabor feat. Bin. dist. OS Verification 0.0% -
EOG Suzaki et al. (2019) 2 3in 3 days Private Prototype No 10 min Statistical n/a n/a n/a n/a
EDA Piciucco et al. (2021) 17 2in 1 week Private Commercial ~ Yes 10s Spectrogram CNN CS Identification 94.9%
Skin Odor Yang and Lee (2018) 10 1 Private Prototype No 3s PCA L2 dist. CS Identification - 96%
Temperature Enamamu et al. (2017) 30 6 days Private Commercial ~ No 3s Statistical MLP CS verification 2-5% -
MSP Kim et al. (2018) 150 1 Private Prototype No 20s Optical val. L2 dist. OS Verification 0.2% -
Subcutan. Conduction Schneegass et al. (2016) 10 1 Private Prototype No 23s MFCC CNN CS Ident. & Ver. 6% 97%
tissues Bioimpedance Cornelius et al. (2012) 46 1 Private Prototype No 9s Statistical SVM CS Ident. & Ver. 17.5% 80%
HBC Nie et al. (2015) 20 8 in 4 days Private Prototype No n/a S21 gain SVM CS Ident. & Ver. 0.24% 98%
Antenna sens. Saadat et al. (2021) 6 3in 3 days Private Prototype No 30s AR MLP CS Identification - 98%
2.2. Continuous Recognition 2018), and also electronic textiles, that is, fabrics with em-

Several human characteristics recordable by wearable de-
vices possess distinctive features even when the involved sub-
jects do not perform a specific activity, and can be thus ex-
ploited to perform continuous recognition. Most of such traits
are controlled by the autonomic nervous system (ANS), and
their usage for authentication purposes is consequently referred
to as cognitive biometrics (Revett and de Magalhaes, 2010).

2.2.1. Heart
The heart is the source of many biometric traits recordable by

wearable devices and usable in recognition systems. The signal
most commonly associated with heart activity is the electrocar-
diogram (ECG), obtained placing electrodes on a subject’s skin
to detect small electrical changes resulting from cardiac muscle
depolarization and repolarization during each heartbeat. The
vast majority of ECG studies for biometric recognition have
exploited medical equipment for data acquisition, with multi-
ple electrodes placed on the chest, wrists, and ankles. Never-
theless, recent approaches have collected ECG through weara-
ble devices with only one or two electrodes, using chestbands
(Lehmann and Buschek, 2020), armbands (Martinho et al.,

SWISDM: https://wuw.cis.fordham.edu/wisdm/dataset . php
SECG-ID: https://physionet.org/content/ecgiddb/1.0.0/

TMIMIC 1II: https://peterhcharlton.github.io/RRest/mimicii_
dataset.html
8PRRB: https://peterhcharlton.github.io/RRest/capnobase_

dataset.html
PersonID: https://robotics.ntua.gr/person-id/
OIEEEPPG: https://zenodo. org/record/3902710#. YVoK3330M2wu
BjoSec: https://www.comm.utoronto.ca/~biometrics/PPG_

Dataset

2DEAP: https://wuw.eecs.qmul.ac.uk/mmv/datasets/deap/
BHSCT-11: http://www.diit.unict.it/hsct11/
4BED: https://zenodo. org/record/4309472# . YUSORX30MuU

bedded electronics (Ye et al., 2011; Pourbabaee et al., 2018).
Commercial wristbands (Chandrashekhar et al., 2020) instead
requires the involved subjects to touch the device with the op-
posing hand to acquire the desired ECG data, as it happens for
the Nymi device or the Apple Watch'3.

Heart activity can be also described by a photoplethysmo-
gram (PPG) using pulse oximeters, which illuminate at close
distance the skin with either green, red, or infra-red (IR) light,
and measure changes in the received radiation (Sancho et al.,
2018). Since IR light is absorbed by the blood in vein vessels
depending on levels of vasodilation, vasoconstriction, and oxy-
genation, both variations in blood volume pulse (BVP) due to
the cardiac cycle (Yadav et al., 2021), and oxygen saturation
(Sp02) using two different wavelengths (Donida Labati et al.,
2020), can be measured by wearable devices exploiting opti-
cal PPG techniques. Furthermore, coarse metrics describing
the cardiovascular activity (Ekiz et al., 2021) such as the heart
rate (HR) and heart rate variability (HRV), and measures as-
sociated to the physical exertion during an activity such as the
calories burned (Vhaduri et al., 2021) or the metabolic equiv-
alent of task (MET), can be easily derived from PPG record-
ings. Typically, sensors capturing transmitted light are placed
on fingertips (Hwang et al., 2021), while reflected light can be
exploited by sensors placed on the wrist (Cao et al., 2020).

Acoustic devices (Spadaccini and Beritelli, 2013) have been
employed to collect phonocardiograms (PCGs), with distinctive
information extracted from the two main sounds of a cardiac cy-
cle, the low-pitch S1 at the closing of mitral and tricuspid valves
(systole) and the high-pitch S2 at the closing of aortic and pul-
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monic valves (diastole). Digital stethoscopes are traditionally
placed on the chest to record PCGs, with small sound sensors
recently used to improve acceptability (Cheng et al., 2020).

Besides electrical, optical, and acoustic devices, also IMUs
have been used to extract discriminative information from car-
diac cycles, detecting the vibrations caused by heart compres-
sions and transmitted throughout the body, producing seismo-
cadiograms (SCGs) using accelerometers or gyrocardiograms
(GCGs) with gyroscopes (Maiorana and Massaroni, 2021).
2.2.2. Respiration

Breathing is an act controlled by the brain to supply oxygen
to the blood and to remove carbon dioxide. Several studies
highlight the existence of distinctive features in people’s breath-
ing rate (BR) (Vhaduri et al., 2021). While this trait has been
typically acquired using acoustic devices such as microphones
or earphones (Chauhan et al., 2017), also chestbands with pres-
sure sensors have been employed to measure changes in the
cross-sectional rib cage areas, caused by oscillations of lung
volumes during inspirations and expirations (Raji et al., 2020).
2.2.3. Brain

Brain activity is the cognitive biometric trait par excellence.
Discriminative features can be derived from non-invasive elec-
trical measurements, known as electroencephalogram (EEG),
taken on the subjects’ head scalp. Such signals depend on
the activity of pyramidal neurons in the outermost brain cor-
tex layers, and possess different characteristics depending on
the performed mental task. While most of studies on EEG
biometrics have been performed using medical-grade acquisi-
tion devices, with dozens of electrodes and a low signal-to-
noise ratio, relatively inexpensive sensors such as the single-
electrode Neurosky MindSet (Chuang et al., 2013), or the Emo-
tiv EPOC+ wireless headset with 14 channels (Arnau-Gonzalez
et al., 2021), have been also employed. Moreover, innovative
designs have been proposed to improve the collectability of
EEG data, as in (Nakamura et al., 2018) where an in-ear sensor
with two EEG channels has been used for people recognition.
2.24. Eye

Custom wearable devices have been build to capture biomet-
ric traits from the human eye. Cognitive signals in the form
of electroocoulograms (EOGs), i.e., electric measurements of
eye movements taken by sensing the voltage difference between
cornea and retina, and depending on the subjects’ eye blinking
patterns, have been analyzed by Suzaki et al. (2019) placing
electrodes on eyeglasses nose pads. Li and Huang (2017) have
also proposed to collect the highly-distinctive characteristics of
the iris at a close range by placing an IR camera over eyeglasses,
although such approach severely hinders sight.
2.2.5. Skin

Our skin possess unique characteristics that can be used for
biometric recognition purposes. A prominent skin-dependent
cognitive trait, typically collected through wristbands, is the
electrodermal activity (EDA), also known as galvanic skin re-
sponse (GSR) (Blasco and Peris-Lopez, 2018). Injecting a
small amount of direct current (DC), EDA measures the resis-
tance of an electrical path along skin surface over time. The
collected values reflect changes in the eccrine sweat gland ac-
tivity, controlled by the sympathetic branch of the ANS, there-
fore dependent on subjects’ cognitive and emotional states on a
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subconscious level, making EDA a reliable measure of physio-
logical arousal and stress. Typically, high-frequency EDA com-
ponents are indicated as phasic, while low-frequency ones are
referred to as fonic (Piciucco et al., 2021).

Skin sweat glands, more specifically apocrine ones, are also
responsible for the secretion of chemical compounds producing
odorant substances. Body odor has been investigated as a cog-
nitive biometric trait too, exploiting wearable electro-chemical
sensors usually placed close to armpits (Yang and Lee, 2018).
The ANS also controls thermoregulatory processes by lever-
aging on blood flows, with direct effects on skin temperature.
This latter is another cognitive characteristics easily recordable
by wearable devices such as wristbands, from which distinctive
features can be extracted (Enamamu et al., 2017).

2.2.6. Subcutaneous tissues

Besides the outer one, also subcutaneous tissues have been
explored to derive distinctive features. Instead of cognitive
traits depending on the ANS, physical properties are considered
in these cases. In fact, anatomical characteristics such as bones,
tendons, and ligaments greatly differ across individuals, and can
be exploited for recognition purposes. The uniqueness of sub-
cutaneous tissues have been for instance analyzed using multi-
spectral skin photomatrix (MSP), an optical technique similar
to PPG, yet using a wide set of wavelengths to illuminate a
body portion such a wrist, and estimate the properties of tissues
at different depths by measuring photon absorption of different
lights (Kim et al., 2018). The absorption of acoustic signals
has been evaluated as a potential biometric trait by Schneegass
et al. (2016), analyzing the frequency changes made by the hu-
man skull to sounds released and received by smart glasses.

Similarly to EDA, a characterization of the properties of sub-
cutaneous tissues can be obtained in terms of biompedance
(Cornelius et al., 2012), that is, the body response to an exter-
nally applied electric current. Differently from EDA, where a
DC current is used to create superficial circuits, alternating cur-
rent (AC) is instead employed in this case, possibly using seve-
ral electrodes to apply different frequencies, typically ranging
from 1 kHz and 100 kHz (Cornelius et al., 2012).

Also body sensor networks have been investigated for bio-
metric recognition. Within the context of human body commu-
nication (HBC) based on capacitive coupling, where the human
body is used as a transmission medium to exchange messages
between two sensors, the S21 transmission gain parameters has
been employed by Nie et al. (2015) as a biometric identifier,
leveraging on the uniqueness of body responses to different fre-
quencies, ranging from 300 KHz up to 750MHz, when trans-
mitting from one palm to the other. Even antenna sensitivity
has been explored as a biometric trait, measuring the return loss
of wearable patches working at 2.45 GHz, with the interaction
depending on the subject’s body tissues (Saadat et al., 2021).

3. Technology Readiness Assessment

As shown in Section 2, several physiological traits have been
proposed to recognize the users of wearable devices. Unfor-
tunately, not all these characteristics have been tested with
the same level of detail. The following sections provides an
overview about the maturity of the research on wearable bio-
metrics, taking into account the most important aspects which
have to be addressed before deploying real-world applications.



3.1. Universality and Distinctiveness

Universality and distinctiveness are the core capabilities a
biometric trait should possess to be used in a recognition sys-
tem. In order to evaluate these properties, datasets with sam-
ples taken from multiple subjects are typically collected, and
authentication performance estimated over them. The size of
such datasets is highly relevant to infer reliable information
about the treated characteristics, especially for systems tested in
identification modality. Unfortunately, the number of subjects
involved in studies on wearable biometrics is rarely adequate.
As shown in Table 1, more than 30 users have been considered
only in works on voice, handwriting, ECG, PPG, PCG, temper-
ature, and bioimpedance, while more than a hundred of subjects
have been exploited only in a handful of studies on gait (De
Marsico et al., 2019), PPG (Hwang et al., 2021; Vhaduri and
Poellabauer, 2019), PCG (Spadaccini and Beritelli, 2013), and
MSP (Kim et al., 2018). Until appropriate tests will be carried
out on databases with a large number of subjects, the reliability
of studies on wearable biometrics will remain questionable.

It has also to be observed that, even if tested over small
databases, several traits have shown very limited distinctive-
ness, with equal error rates (EERs) often greater than 10%.
Such behavior is mainly due to intrinsic characteristics of the
considered traits, but also to limitations of the employed wea-
rable devices. In fact, as already remarked, the accuracy of
these latter is typically much lower than that of medical equip-
ment (Vhaduri et al., 2021), and also than that of mobile devices
such as smartphones (Yoneda and Weiss, 2017), with negative
consequences on the feasibility of extracting effective features
from the collected data.

3.2. Collectability and Acceptability

Collectability and acceptability of biometric approaches typ-
ically depend on the technology employed to record the con-
sidered traits, and improve with the usage of comfortable and
unobtrusive commercial devices. Table 1 shows that prototype
acquisition devices, often relying on Bitalino (Blasco and Peris-
Lopez, 2018) or Arduino platforms (Yang and Lee, 2018), have
been employed in most of the performed studies. Yet, com-
mercial devices have been used to record behavioural characte-
ristics from gait (De Marsico et al., 2019) or gestures (Yoneda
and Weiss, 2017), heart signals such as ECG (Pourbabaee et al.,
2018), PPG (Retsinas et al., 2020), and SCG (Maiorana and
Massaroni, 2021), respiration (Chauhan et al., 2017), EEG
(Arnau-Gonzalez et al., 2021), EDA (Piciucco et al., 2021), and
temperature (Enamamu et al., 2017). Interestingly, more than
one of these traits can be simultaneously acquired using a single
device, as it happens with Fitbit'® and Empatica E4!7.

3.3. Permanence

An aspect often neglected in biometric studies regards the
permanence of distinctive features in the employed traits. Ac-
tually, it is well-known that recognition results computed by
comparing data from distinct sessions are notably worse than
those accomplished on single-session datasets (Sancho et al.,
2018), mainly due to aging effects occurring in all biometric

https://www.fitbit.com
https://waw.empatica.com/research/e4/
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traits. When dealing with wearable biometrics, the permanence
of distinctive features may be also affected by personal habits
such as those concerning diet, and by the dependency of the
collected data on the placement of on-body sensors, being it is
very unlikely to attach them always at the very same position.

Longitudinal tests have been conducted in at least one pa-
per for most of the traits mentioned in Section 2. When data
captured during more than a session are available, the results
in Table 1 are referred to cross-session comparisons. It has
yet to be observed that time spans larger than one week be-
tween acquisition sessions have been considered only for gait
(De Marsico et al., 2019), EMG (Raurale et al., 2021), ECG
(Ye et al., 2011), PPG (Retsinas et al., 2020; Cao et al., 2020;
Hwang et al., 2021), and EEG (Arnau-Gonzalez et al., 2021).
For the other characteristics, there is no evidence that recogni-
tion could be reliably accomplished one week after enrolment.
It is also worth remarking that, even when recordings from mul-
tiple sessions are available, tests have been often performed by
randomly dividing data into training and testing subsets, with-
out considering any temporal information (Pourbabaee et al.,
2018; Nie et al., 2015; Lee et al., 2020). Such approach does
not allow to properly take into account longitudinal aspects, and
should be therefore avoided.

Beyond checking whether their distinctive features remain
stable over time, biometric traits acquired to perform continu-
ous recognition should also be tested to assess whether it is ac-
tually feasible to recognize a subject regardless of the specific
activity carried out. Although biometric traits have been often
collected considering different conditions, only a limited set of
well-coded activities such as sitting, standing, lying down, or
walking, has been typically taken into account (Luque et al.,
2018; Retsinas et al., 2020). In such controlled scenarios, tests
are performed with the assurance of having available, as enroll-
ment data, acquisitions taken in the same conditions encoun-
tered during recognition. If this is not the case, notable perfor-
mance worsening typically happens (Maiorana and Massaroni,
2021). In order to generalize the proposed approaches, multi-
conditions scenarios can be handled using a two-stage recog-
nition process, during which the performed activity has to be
first classified, and then a recognition model specific for that
condition is employed (Yoneda and Weiss, 2017). It has also
to be observed that physiological data could exhibit different
characteristics even when collected in sessions characterized by
the same recording conditions, as it happens for example after
making a physical effort (Blasco and Peris-Lopez, 2018).

Conversely, recordings taken in the wild, without requiring
the involved subjects to perform specific activities, have been
considered only for ECG (Ye et al., 2011; Pourbabaee et al.,
2018; Lehmann and Buschek, 2020), PPG (Yadav et al., 2021),
and EDA (Piciucco et al., 2021) traits. Notable variations in the
achieved recognition performance can be obtained in such un-
supervised scenarios, due to the possible discrepancies of phys-
iological characteristics employed for enrolment and authenti-
cation. Furthermore, in addition to the performed activity, seve-
ral traits recorded by wearable devices may be also dependent
on the subject’s emotional state, and such influence is worthy
of proper investigation, as done for PPG by Yadav et al. (2021).



Table 2: Summary of state-of-the-art approaches using multi-modal biometric traits acquired through wearable devices for automatic people recognition.

. Database Devices Multiple Time for Fusion Recognition Performance
Traits Paper . N . . Feature Comparator N
Subjects Sessions Release Type Number conditions| recognition level Modality EER/HTER CIR
ECG, PPG, EMG, . N . - . .
" : : 2 : : Statistica s > ca 9
EDA, BR, Temp. Diaz Alonso et al. (2016) 25 2 Private Prototype 6 No 1 min Feature Statistical SVM CS Identification 92%
PPG, BR, Temp. Mosenia et al. (2017) 37 1 Public Prototype 3 No 1 min Feature Statistical SVM CS Verification 2.6%
ECG, PPG, EDA Blasco and Peris-Lopez (2018) 25 1 Public'S Prototype 3 Yes 20s Feature Statistical GMM OS Verification 1.9%
ECG, PPG Martinho et al. (2018) 53 2 in 8 weeks Private Prototype 2 Yes 1 heartbeat Decision Time Signal L2 dist. OS Verification 13%
ECG, BR, EDA Bianco and Napoletano (2019) 37 1 Public!? Commercial 2 No 60's Feature Learned CNN CS Identification 90.5%
Gait, PPG Vhaduri and Poellabauer (2019) 400 over 17 months Private Commercial 1 Yes 5 min Feature Statistical OC-SVM OS Verification 20-30%
Gait, PPG, BR Vhaduri et al. (2021) 10 1 Private Commercial 2 Yes 10 min Feature Statistical OC-SVM OS Verification 19.5%
Gait, PG, EDA, Ekiz et al. (2021) 74 over 5 days On Commercial 1 Yes 1 min Feare  Statistical CNN4RNN  CS Verification 9.3%
Temp. request

3.4. Data Processing

As for most pattern recognition systems, the typical process-
ing pipeline of wearable biometric recognition includes pre-
processing, feature extraction, and classification. During pre-
processing, the acquired traits, typically temporal sequences of
multidimensional data, are first filtered, with common choices
for this stage including notch filters, followed by band-pass
Butterworth filters to cancel DC components and frequencies
above the range of interest.

The treated signals are then commonly divided into over-
lapping frames, whose duration can be fixed or depending on
specific signal characteristics, such as the cardiac cycle for
heart-related signals. Individual frames are then separately pro-
cessed to extract distinctive information, traditionally in the
form of hand-crafted features. For instance, statistical fea-
tures such as the mean, maximum, minimum, and standard
deviation over predefined intervals have been often computed
(Lehmann and Buschek, 2020). The power spectral density
(PSD) over selected frequency ranges (Nakamura et al., 2018),
together with its derivations such as mel-frequency cepstral co-
efficients (MFCCs) (Schneegass et al., 2016), Gammatone Fre-
quency Cepstral Coefficients (GFCC) (Chauhan et al., 2017),
or spectrogram (Donida Labati et al., 2020), have been also
employed. Time-dependent representations have been instead
used by either directly exploiting the collected waveforms (San-
cho et al., 2018), employing modelizations such as the auto-
regressive (AR) one (Saadat et al., 2021), or resorting to time-
frequency domains such as wavelets (Ye et al., 2011).

Comparison between enrolment and probe data have been
performed relying on classical machine learning approaches
such as support vector machines (SVMs) (Jiang et al., 2021),
decision trees like random forest (RF) (Cao et al., 2020), hidden
Markov models (HMMs) (Arnau-Gonzalez et al., 2021), Gaus-
sian mixture models (GMM) (Chauhan et al., 2017), dynamic
time warping (DTW) (De Marsico et al., 2019), or even sim-
ple distance computations (Nakamura et al., 2018). However,
more and more frequently, deep learning strategies are being
exploited to process biometric traits acquired using wearable
devices. In this case, discriminative features are automatically
derived either from the original signals (Hwang et al., 2021),
or from intermediate representations (Schneegass et al., 2016).
Common learning architectures include multi-layer perceptrons
(MLPs) (Enamamu et al., 2017), convolutional neural networks
(CNNs) (Luque et al., 2018), or combinations of CNNs and re-
current neural networks (RNNs) (Hwang et al., 2021). In most

Bhttps://www.dropbox.com/s/leida27fcgpOygr/
LowCostSensorsBiometrics.zip?d1=0
Yhttps://osf.io/c42cn/

cases, custom CNN architectures have been used in the pro-
posed studies (Pourbabaee et al., 2018), with fine tuning from
networks trained for image classification tasks only recently ex-
ploited (Piciucco et al., 2021). Data augmentation has been also
employed to improve the generalizability of the learned repre-
sentations (Yoneda and Weiss, 2017; Hwang et al., 2021).

3.5. Multi-modality

Even if biometric traits captured by wearable devices can
hardly guarantee recognition performance comparable with tra-
ditional approaches, multi-modality can be easily exploited in
wearable biometrics. A summary of the most relevant multi-
biometric proposals is given in Table 2. In most cases, the em-
ployed biometric traits are fused at feature level, either combin-
ing features extracted from individual characteristics, or jointly
feeding them to CNNs. It is worth remarking that multi-
biometric solutions using a single commercial device to simul-
taneously collect multiple physiological signals have been pro-
posed (Vhaduri and Poellabauer, 2019; Ekiz et al., 2021).

3.6. Throughput

A relevant aspect of biometric systems using wearable de-
vices is the time required to perform recognition. As men-
tioned in Section 3.4, the collected data are commonly divided
into frames employed as authentication probes. Frame dura-
tion is typically in the order of some seconds, a bit less in case
individual heartbeats are considered. In case the recognition
rates achievable using such short segments are not satisfying,
the information derived from multiple frames can be jointly
exploited, for instance by fusing, through majority voting, the
decisions taken over consecutive windows (Blasco and Peris-
Lopez, 2018; Griswold-Steiner et al., 2019).

It may also happens that frame lenghts in the order of min-
utes have been used. Such long intervals have been considered
to either capture enough discriminative information to perform
recognition regardless the performed activity (Retsinas et al.,
2020), or to deliberately use only coarse-grained biometric cha-
racteristics such as MET, in order to take into account limita-
tions in terms of computational power and battery consumption
of wearable devices (Vhaduri and Poellabauer, 2019).

3.7. Recognition Modality

Biometric recognition can be performed as either identifica-
tion or verification. The former is a typical classification task, in
which a probe sample has to be associated to an identity within
a set of N users, with information from all the involved subjects
acquired during enrolment and employed for 1-to-N compar-
isons. A closed-set (CS) identification is simulated considering,
as probe samples, only traits acquired from the users available
during enrolment. Conversely, in case not all probes belong to
registered users, open-set (OS) identification is evaluated. In



this latter case, the system should have a reject option avail-
able, in order to deal with subjects unknown during enrolment
(De Marsico et al., 2019). Performance is commonly evaluated
in terms of correct identification rate (CIR) in both scenarios.

On the other hand, verification comprises 1-to-1 compar-
isons, computing the similarity between a probe sample and the
traits taken during the enrolment of the claimed identity only,
and estimating performance in terms of EER or half-total error
rate (HTER). Such task is often carried out employing binary
classifiers, in which a model is estimated for each user dur-
ing enrolment, and a binary decision regarding whether a probe
sample can belong to the users’ model is taken during recog-
nition. In case this model is created using, as impostors’ data,
samples from all the available subjects, CS verification is per-
formed. Otherwise, if this model is build using only data taken
from the legitimate user, or employing, as impostors’ data, sam-
ples from subjects not involved with further tests, OS verifica-
tion is accomplished (Luque et al., 2018).

Real-life scenarios most commonly involve OS identification
and verification. Yet, the vast majority of studies on weara-
ble biometrics have been carried out on CS recognition modali-
ties. Actually, OS conditions are much more difficult to manage
than CS ones, with OS recognition performance significantly
affected by the lower amount of information available during
enrolment, which often imposes to use either simple distance-
based classifiers (Sancho et al., 2018), or anomaly detectors
such as one-class SVM (OC-SVM) (Vhaduri et al., 2021).

3.8. Interoperability

In order to train deep learning approaches, exploited in seve-
ral recent works on wearable biometrics as mentioned in Sec-
tion 3.4, a significant amount of data is typically required. Yet,
as remarked in Section 3.1, data from a large number of sub-
jects have been used only in few studies. In order to alleviate
this potential issue, it could be beneficial to define methods ex-
ploiting knowledge derived from data extracted with a device
other than the one currently in use. Cross-domain adaptation
has been for instance investigated by Lee et al. (2020) for PPG
signals. This aspect is still largely under-explored, although its
practical applications would be extremely relevant.

3.9. Circumvention

Proper techniques should be designed to protect physiolog-
ical data collected by wearable devices, especially if they are
shared with external infrastructures for recognition purposes.
Since information related to the users’ health or behavioural
aspects can be extracted from the considered traits, it would
be recommendable to generate representations from which the
original signals cannot be recovered. Furthermore, it could be
useful to apply cancelable transformations to employ different
versions of the same trait in distinct applications. A template
protection scheme based on random projections for PPG sig-
nals has been for instance proposed by Cao et al. (2020), yet
a proper investigation on how physiological data collected by
wearable devices can be effectively secured is still missing.

4. Research Directions
Given the current state of the art, future research on wearable

biometrics should focus on acquisition devices to be employed,
data to be collected, and processing to be performed.
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In order to improve collectability, acceptability, and accu-
racy of recorded data, technological developments in wearable
technology must be constantly monitored, in order to identify
solutions that may ameliorate the existing ones, or that imple-
ment innovative data acquisition methods (Perez and Zeadally,
2021). For instance, novel commercial products have been re-
cently introduced to make brain signals recording easier and
more comfortable, using headbands?® or earbuds 2'. Extremely
compact devices, such as the recently introduced smart rings®2,
could be also exploited for recognition purposes. Desired fea-
tures of devices to be considered for wearable biometrics in-
clude the ability to collect multiple traits and long battery life,
as in passive health tags?®. Wearable sensing technologies such
as electronic patches and smart tattoos (Alberto et al., 2020)
could also be particularly interesting for wearable biometrics.

Concerns about uniqueness, permanence, and interoperabil-
ity may be better addressed once new public databases will be
available. The collected data should possess several proper-
ties which are currently rarely encountered in the already em-
ployed collections, such as being taken from a large number of
subjects, during multiple acquisition sessions spanning several
weeks, considering multiple subject conditions and emotional
states, and recorded through multiple commercial devices, each
possibly acquiring more than a single trait.

Furthermore, algorithms designed to perform recognition in
open-set conditions, that are the ones most likely applicable to
real-life scenarios, have to be investigated. Such studies are es-
pecially needed to design OS verification systems where deep
learning strategies are employed. Toward this aim, novel train-
ing strategies, such as those involving siamese networks, have
yet to be explored for wearable biometrics. Longitudinal stud-
ies have to be performed to evaluate the stability over time of
distinctive characteristics, and to design template update strate-
gies improving the achievable recognition rates for prolonged
recognition. Efficient artifact detection and removal could im-
prove activity-independent continuous recognition. Presenta-
tion attacks against wearable devices, and techniques for their
detection, are still unexplored research areas. Effective tem-
plate protection methods would be also extremely useful to
protect the physiological signals recorded by wearable device.
Transfer learning and domain adaptation should be investigate
to achieve device interoperability. Designing algorithms that
take into account the storage and computing capacity of low-
power wearable devices (Torti et al., 2021), in order to hope-
fully perform on-board processing of the collected signal, is
another goal that should be pursued.

5. Conclusions

Wearable biometrics is an active research area with interest-
ing applications for real-life scenarios. Current state-of-the-art
research has already shown that several traits could be exploited
to effectively perform continuous recognition of the owners of
the employed devices. Nevertheless, investigation in this field
is still in its infancy, and in-depth studies are required to fully

2https://brainbit.com/
2lhttps://www.emotiv.com/blog/the-future-of-work-is-here-now/
2https://ouraring.com/

Bhttps://www.spirehealth.com/



reveal its potential, with the aim of improving collectability and
accuracy by exploiting advances in wearable device technology,
analyzing permanence and evaluating interoperability by col-
lecting new datasets, and improving recognition performance
and security by designing novel processing paradigms.
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