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Brain waves for automatic
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Abstract—Brain signals have been investigated within the
medical field for more than a century to study brain diseases
like epilepsy, spinal cord injuries, Alzheimer’s, Parkinson’s,
schizophrenia, and stroke among the others. They are also used
in both brain computer and brain machine interface systems
with assistance, rehabilitative, and entertainment applications.
Despite the broad interest in clinical applications, the use of
brain signals has been only recently investigated by the scientific
community as a biometric characteristic to be used in automatic
people recognition systems. However, brain signals present some
peculiarities, not shared by the most commonly used biomet-
rics, like face, iris, and fingerprints, with reference to privacy
compliance, robustness against spoofing attacks, possibility to
perform continuous identification, intrinsic liveness detection,
and universality. These peculiarities make the use of brain signals
appealing. On the other hand there are many challenges which
need to be properly addressed. Among them, the understanding
of the level of uniqueness and permanence of brain responses, the
design of elicitation protocols, the invasiveness of the acquisition
process are only few of the challenges which need to be tackled.
In this paper we further speculate on those issues which represent
an obstacle towards the deployment of biometric systems based
on the analysis of brain activity in real life applications and
intend to provide a critical and comprehensive review of state-of-
the-art methods for electroencephalogram based automatic user
recognition, also reporting neurophysiological evidences related
to the performed claims.

Index Terms—EEG, biometrics, brain rhythms, elicitation
protocols.

I. INTRODUCTION

In the last decade, an always growing interest towards the
use of biological signals, like electroencephalogram (EEG),
electrocardiogram (ECG), electromyogram (EMG), electroder-
mal response (EDR), blood pulse volume (BPV), to cite a
few, for the purpose of automatic user recognition is being
witnessed. Within this framework the so-called “cognitive
biometrics” refer to biometric traits which are detected during
cognitive and/or emotional brain states. Therefore, while con-
ventional biometrics rely on the use of either physiological or
behavioral characteristics, that is on some biological character-
istics the individual “possesses” or on the “way the individual
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behaves” respectively, cognitive biometrics are based on the
measurement of signals directly or indirectly generated by the
“way the individual thinks” as a distinctive characteristic for
automatic user recognition.

The study of brain activity during specific mental states has
been explored by means of different methodologies in order to
extract discriminating features for the purpose of user recog-
nition. Specifically, brain activity can be recorded either by
measuring the blood flow in the brain or by measuring the neu-
rons’ electrical activity. To the first category belong approaches
like functional magnetic resonance imaging (fMRI), which
measures the concentration of oxygenated and deoxygenated
haemoglobin in response to magnetic fields; near-infrared
spectroscopy (NIRS), which measures the concentration of
oxygenated and deoxygenated haemoglobin by means of the
reflection of infrared light by the brain cortex through the
skull; positron emission tomography (PET), which measures
neuron metabolism through the injection of a radioactive
substance in the subject. To the second category belong
approaches like magneto-encephalography (MEG), which is
sensitive to the small magnetic fields induced by the electric
currents in the brain, and electroencephalography (EEG),
which is sensitive to the electrical field generated by the
electric currents in the brain. EEG recordings are acquired with
portable and relatively inexpensive devices when compared
to the other brain imaging techniques. Specifically, signal
amplifiers with high sensitivity and high noise rejection are
used to measure the voltage fluctuations on the scalp surface,
resulting from the electric field generated by the firing of
collections of pyramidal neurons of the cortex. The EEG
amplitude of a normal subject in the awake state, recorded with
scalp electrodes, is in the range [10, 200]µV , and a healthy
human brain has its own intrinsic rhythms falling in the range
of 0.5 − 40Hz. EEG based brain imaging techniques present
a limited spatial resolution due to the physical dimension,
in the range of several millimeters, of the surface electrodes
usually employed in the acquisition setup, which limits the
possible number of the electrodes covering the whole scalp.
A limited spatial resolution is also due to the dispersion of
the signals, generated by the sources on the cortex, within the
head structures before they reach the scalp. On the contrary,
EEG techniques have a high temporal resolution, in the range
of milliseconds, which allows dynamic studies to understand
the underlying mechanisms by means of computational meth-
ods. In fact, information concerning for instance psycho-
physiological state, neurological and neuromuscular health,
emotions, memory, the course of concentration, attention,
levels of arousal, mental fatigue or workload during special
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Fig. 1. The 10-20 International system seen from left (A) and above
the head (B). The letters F, T, C, P and O stand for frontal, temporal,
central, parietal, and occipital lobes. Even numbers identify electrodes on
the right hemisphere, odd numbers those on the left hemisphere, and “z”
(zero) refers to electrodes placed on the midline. (C) Electrodes location
and nomenclature of the intermediate 10% electrodes, as standardized by
the American Electroencephalographic Society (Jaakko Malmivuo and Robert
Plonsey, Bioelectromagnetism, Oxford University Press, 1995, WEB version).

tasks, and sensitiveness to external stimulation can be extracted
from EEG inspection and manipulation [1]. Such a kind of
evidence has led in last decades to use brain signals to convey
conscious volition in EEG-based systems, like brain computer
interface (BCI) [2], [3], and brain machine interface (BMI)
[4], aiming at controlling remote devices by means of the
interpretation of the brain electrical activity.

Although some isolated attempts to use EEG to discriminate
people have been performed in the past [5], only recently
the scientific community has started a more systematic in-
vestigation on the use of EEG signals as human distinctive
traits which can be potentially used in a biometric system
[6]. In fact the way the brain regions are organized and
coordinated during specific cognitive functions or mental
states, such as the response to audio or visual stimuli, during
real or imagined body movements, imagined speech, resting
states, etc., or during emotional states, can provide relevant
information about the brain conditions which, in the studies
conducted so far, have shown to have some discriminant
capabilities among subjects [7], [8], due to both morphological
and anatomical traits, and functional plasticity traits. Therefore
this overview paper will focus on the level of understanding
that is been achieved about the use of EEG signals as biometric
identifiers so far. Specifically, we cover and discuss several
issues which need to be taken into account to design an
EEG based user recognition framework and to perform a fair
comparison among the existing systems in terms of usability
and recognition performance. A comprehensive though critical
review of the methodologies dealing with EEG biometrics

proposed in the existing literature is presented to effectively
crystallize the state of the art, and to systematically identify
the most important issues to address in the research agenda
on EEG biometrics. Therefore the aim of this paper is to
provide the interested researchers and practitioners with an
overview of the approaches currently employed to recognize
identities using EEG based cognitive biometrics as well as
to establish a correlation between the recognition capabilities
of the state of the art approaches and neurophysiological
evidences. The different modeling approaches suitable for
the several scenarios considered to elicit brain responses are
reviewed and evaluated according to the specific application.
In particular we compare the existing EEG based biometric
systems with respect to the employed acquisition protocols in
terms of cognitive task, the number of electrodes and their
spatial configuration, the features extraction algorithms, the
classification algorithms and their effectiveness in clustering
the observations. We will try to report, whenever possible,
also a physiological interpretation of the extracted features
by correlating them to the anatomical traits and functional
organization of the brain structures during specific mental
tasks.

The paper is organized as follows. In Section II a char-
acterization of a generic EEG signal acquisition system is
given along with a characterization of the brain rhythms.
In Section III the EEG signal acquisition protocols used in
biometric oriented applications are described. In Section IV
the different characteristics of EEG biometrics are deeply
analyzed. State-of-the-art approaches are described in Section
V where an analysis on the employed protocols, the feature
extraction algorithms, the classification algorithms, and the
database structure is conducted. In Section VI open issues on
the design of EEG biometric are detailed and conclusions are
finally drawn in Section VII.

II. BRAIN ACTIVITY SENSING: EEG BRAIN RHYTHMS

EEG signals are usually acquired using superficial scalp
electrodes, placed according to the 10-20 International system
depicted in Figure 1 and recommended by the International
Federation of Societies for Electroencephalography and Clin-
ical Neurophysiology [9]. The “10” and “20” refer to the
percentage of the distances between the landmark points,
namely the inion and the nasion, as shown in Figure 1 (A) and
(B), used to draw the lines at which intersections the electrodes
are positioned. In other words, given the landmark points, the
electrodes positioning is made by considering the intersections
between lines which are sagittally and coronally drawn at 10
or 20 % of the distances between the inion and nasion.

Since the early research on EEG analysis, it has been
observed that the regions of a healthy human cortex have
their own intrinsic rhythms in the range of 0.5 − 40Hz. In
general, five main rhythms can be detected from an EEG
recording: Delta (δ) 0.5 − 4Hz, Theta (θ) 4 − 8Hz, Alpha
(α) 8−14Hz, Beta (β) 14−30Hz and Gamma (γ) over 30Hz.
In Figure 2 examples of δ, θ, α, β, and γ rhythms acquired
through the O2 channel using a resting state with closed eyes
protocol are depicted. The amount of activity in different EEG
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Fig. 2. Examples of Delta, Theta, Alpha, Beta, and Gamma waves acquired
through the channel O2 using a ”rest state with closed eyes” protocol.

frequency bands can be quantified employing spectral analysis
techniques [1]. The contribution of the different rhythms to
the EEG depends mainly on the level of alertness, on the
age and behavioral state of the subject [10]. Moreover an
EEG pattern is influenced by neuro-pathological conditions,
metabolic disorders, and drug action [11]. The different brain
rhythms or some combination of them significantly increase
or decrease in relation to other rhythms depending on specific
mental states, which can be induced by the performance of
a proper acquisition protocol. Specifically, Delta and Theta
frequency bands are considered to represent slow oscillating
neural synchronization, or slow wave (SW) activity, while
Beta and Gamma bands represent fast wave (FW) activity [1].
Brain oscillations in these frequency bands have been linked to
various physiopsychological states and cognitive functions, as
reported for instance in [12]. A more detailed characterization
of the subbands is given in the following.
• Delta 0.5−4Hz: Delta rhythm is a predominant oscillatory

activity in EEGs recorded during the so called deep or slow
wave sleep (SWS). In this stage, Delta waves usually have
relatively large amplitudes (75 − 200µV ) and show strong
coherence all over the scalp. In newborns, slow Delta rhythms
predominate. An increase in Delta EEG activity during the
performance of a mental tasks has shown to be related to an
increase in subjects’ attention to internal processing [13].
• Theta 4 − 8Hz: In human scalp EEG, changes in Theta

rhythms are very difficult to detect without the help of compu-
tational methods from raw EEG traces. If EEG power in a rest-
ing condition is compared with a test condition, an increased
activity in the Theta subband is observed, which is known as
Theta-band power synchronization. In particular Theta band
power increases in response to memory demands, selectively
reflecting the successful encoding of new information [14].
• Alpha 8 − 14Hz: The oscillatory Alpha band activity is

the most dominant rhythm which emerges in normal subjects,
most pronounced in the parieto-occipital region. It is man-
ifested by a peak in frequency spectrum. The Alpha brain
oscillations may present amplitudes large enough to be clearly

Fig. 3. Topographic maps (EEGLab toolbox [19]) of rhythms Delta, Theta,
Alpha, and Beta (top view of a head). Each map shows in false colors the
spatial distribution on the scalp surface of the related EEG rhythm. The mean
value of the power spectral density for each frequency band is reported.

seen in raw EEG traces acquired in specific mental states
(see Figure 2). It is characteristic of a relaxed but wakeful
state primarily with closed eyes and attenuates with eyes
opening or mental exertion due to event-related Alpha power
desynchronization. These changes in the Alpha band reflect
an increased arousal caused by basic processing of visual
information [15]. Moreover there is evidence that attentional
and semantic memory demands lead to a selective suppression
of Alpha in different subbands and that the well described
effects of visual stimulation represent just a special class
of sensory-semantic task demand [16]. This confirms the
evidence that Theta and Alpha band power are related to each
other, although in an opposite way.
• Beta 14 − 30Hz: Phase synchrony in Beta frequency

band is enhanced for consciously perceived stimuli [17], and
detectable mainly from the involved cortical areas, including
somatosensory, frontal, parietal and motor regions, depending
on the performed task. Specifically, Beta activity is character-
istic for the states of increased alertness and focused attention.
• Gamma over 30Hz: Neuronal synchronization in the

Gamma band is considered important for the transient func-
tional integration of neural activity across brain areas, which
represent various functions involving active information pro-
cessing, e.g., recognition of sensory stimuli, and the onset of
voluntary movements [18]. Gamma components are difficult to
record by scalp electrodes and their frequency usually does not
exceed 45Hz [1]. Components up to 100Hz, or even higher,
may be registered in electrocorticogram (ECoG).

In general, it can be assumed that the slowest brain rhythms
are dominant during an inactive state and the fastest are typical
of information processing performance. In Figure 3 the topo-
graphic maps related to the main brain rhythms during resting
with closed eyes are displayed in false colors. Specifically, the
mean value of the power spectral density for each frequency
band is reported.

III. ACQUISITION PROTOCOLS

EEG signals can be acquired through portable devices that
sense the electric field generated by the brain while resting
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or during a variety of cognitive tasks, such as response to
audio or visual stimuli, real or imagined body movements,
imagined speech, etc. More specifically we refer to “event
related potentials” (ERP) as to a small change in the electrical
activity of the brain, time-locked to a meaningful externally
(exogenous) or internally (endogenous) generated event [20].
ERP signals convey information on changes which occur when
similarly oriented pyramidal neurons of both individual and
different local networks fire in synchrony. For endogenous
ERPs, time-locked to a mental event such as the recognition of
a target stimulus, the activity of the cortex reflects functional
coordination during neurocognitive information processing
[21]. ERP components can be described in terms of latency
time, polarity, and topography. Large individual differences
exist for the ERP components, while a certain stability is
observed within a subject [22]. Other largely studied brain
signals are the “slow cortical potentials” (SCPs), also used as
control signals in BCI context. They represent slow voltage
shifts in EEG, which are involved in the modulation of the
excitability level of underlying cortical regions, and in the
preparatory allocation of resources for cortical processing
[23]. SCPs last from 300 ms to several seconds and can
be self-regulated with different purposes using immediate
feedback. EEG signal analysis allows catching the relative
timing of neural events during a specific task performance.
The physiological phenomena underlying some brain signals
have been decoded studying EEG recorded within dedicated
acquisition protocols. These protocols are specially designed
in order to elicit specific brain responses of interest, with the
aim of studying the neural mechanisms of information pro-
cessing in environmental perception as well as during complex
cognitive operations. In this regard several data acquisition
protocols have been proposed in the literature specifying the
data acquisition conditions, the task definition, and the sens-
ing electrodes configuration related to the neurophysiological
function under analysis. In this Section we describe some
acquisition protocols employed in EEG studies. Topographic
information on source activation are reported depending on
the performed task and guidelines for efficient scalp electrodes
configurations are provided.

A. Elicitation of brain responses

Since the earliest applications of EEG signals, particular
interest has been shown in the study of cerebral activity during
a state of rest, due mainly to the simplicity of the acquisition
process. Therefore, the resting state protocol, with eyes closed
or open, has been widely studied for different purposes. Within
this paradigm the enrolled subjects are typically seated in a
comfortable chair with both arms resting, in a dimly lit or
completely dark room. Generally, external sounds and noise
are minimized to favor the relaxed state of the subjects.
Participants are asked to perform few minutes of resting
state with eyes closed (EC) or eyes open (EO), avoiding
any focusing or concentration, but staying awake and alert.
Brain activity during resting state without performing any task
carries interesting information as contained in EEG specific
patterns [24]. Eyes closed and eyes open resting conditions

are usually employed in EEG research studies for baseline
estimates, although they represent different processes related
to global arousal and focal activation [25]. Moreover, EEG
patterns have shown significant differences, specially related
to the spectral analysis, between rest and several cognitive
tasks, and even between different cognitive tasks themselves,
involving distinct neural systems. In order to infer about the
properties of neural activation in the involved brain regions,
math, logical, and spatial cognitive operations have been
considered in the development of suitable acquisition proto-
cols. Changes in neuronal activation patterns due to specific
components of mental calculation tasks can be observed from
the analysis of each frequency band, as they seem to be related
to oscillatory activity of different neural networks. In this
regard, different EEG patterns have been examined by testing
healthy subjects in different conditions of mental calculation
through properly designed protocols. In these protocols the
mental task period is usually preceded by a rest period in
order to provide a baseline. During the mental task interval,
the subject is asked to solve a problem providing an answer
[26]. The features of such kind of brain patterns reflect inter-
individual variability due to different abilities, aptitudes, innate
mechanisms of habit, brain plasticity, etc.

The most explored protocols involve the elicitation of
the above mentioned ERPs. Task-related ERPs, as well as
background EEG, are associated to different behavioral and
cognitive traits. ERP signals can be elicited using different
stimulation paradigms involving for instance sensory, cognitive
or motor events. Usually, the exogenous eliciting events are
repetitively modulated sensory stimuli such as a visual flicker.
The so elicited evoked potentials strongly depend on the phys-
ical parameters of the stimuli. On the other hand endogenous
ERPs depend on internal cognitive events reflecting the way
the subject evaluate a stimulus.

A largely studied and employed brain potential is the P300
ERP, especially used in BCI context. The P300 ERP is a
positive deflection of the scalp potential which occurs around
300 ms after the onset of a task-relevant stimulus, with a
centro-parietal focus [27]. The most effective paradigm for
inducing a P300 response is the oddball task. In this paradigm
an infrequent but task-relevant stimulus is presented among
frequent irrelevant stimuli [28]. Different kind of stimuli can
be employed to carry out such paradigm, and the charac-
teristics of the P300 response will change with the type of
stimulation, its timing, and with the task difficulty. In Figure
4, the topographic distribution of the brain P300 response is
shown for a subject involved in an oddball paradigm, where
the presented stimuli are different geometric shapes, and the
subject is asked to detect just one specific shape among the
others. For the particular case shown in the figure, a good brain
response can be detected in central and parietal electrodes,
as a much larger P300 amplitude (dotted-red line) related
to target stimuli stands out from a baseline measure (blue
line) obtained by averaging non-target responses. The P300
individual differences relate to amplitude, latency, waveform
and scalp potential distribution [27] and reflect psychophys-
iological aspects of individual central nervous system reac-
tivity. Another typically employed ERP stimulation protocol
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Fig. 4. Topographic distribution of P300 brain potential as elicited through an
oddball paradigm (Normalized amplitude for visualization purposes). Labels
which indicate the related channel are reported on each P300 waveform,
obtained by averaging the EEG segments time-locked to target stimuli (dotted-
red lines). Brain responses related to non-target stimuli are also reported in
each subplot (blue lines).

during EEG acquisitions is the elicitation of Visual Evoked
Potentials (VEP), performed in order to analyze the way
the brain perceives and processes visual inputs, to control
BCI applications and to support neurological diagnosis. VEPs
are evoked potentials that occur in the visual cortex, time-
locked to a repeated sensory stimulation related to a subjects
visual field. Within VEP protocols no response or cognitive
processing by the subject is required. The visual stimulation
can consist for instance of checkerboard pattern reversal,
flashing black/white images, pattern onset stimuli or photic
stimulation (light) [29]. In a typical setup to elicit VEPs a
flashing stimulus is displayed either at the center of a screen
or through light-emitting diodes (LEDs) in the central visual
field, since it causes a greater response amplitude [30]. Some
interesting evidences have been obtained from the analysis
of µ [31] and β EEG rhythms recorded over sensorimotor
cortex within the so-called motor imagery paradigm [32].
Typically, during each acquisition session, subjects are asked
to imagine moving for instance either a hand or a foot for few
seconds when the cue representing the movement instruction
appears on a screen. As reported in [32] it has been observed
that the patterns of µ and β rhythms desynchronization over
sensorimotor cortical areas during motor imagery are similar
to those during real performed movement. Moreover, in the
same work principal components analysis on sample average
signals has shown marked individual differences in motor-
related EEG patterns, topographically and spectrally focused.
More recently, EEG acquisitions have been performed during
the so called “speech imagery”, aiming at recognizing the
neural activities associated with speech production. In some
protocols, enrolled subjects are instructed to imagine contin-
uous vowel vocalization for few seconds from the onset of
a specific cue which can be an acoustic signal or a task-
representative image appearing on a screen [33]. Furthermore,
when using SCPs introduced above, the users’ training for the
SCPs voluntary control can be carried out as follows [34].
Subjects are asked to move a cursor which appears at the
center or at the periphery of a screen toward a target, by

modulating the SCP amplitude.
The experimental setups described above represent an

overview of acquisition protocols commonly employed when
investigating brain functioning with different purposes, such
as the evaluation of brain activity patterns for applications
like diagnosis and device control. Some of the aforementioned
paradigms are also employed in biometrics for user recognition
as detailed in the following, while some others have some
potentials which have not been explored within the biometric
framework yet.

B. Scalp electrodes configurations

The spatial distribution of brain activations, as reflected
in scalp EEG signals, strongly depends either on the mental
state of the subject or on the performed task during the
acquisition session. For each designed protocol a suitable
electrode configuration in terms of number of sensors, their
placement on the scalp as well as their density can be identified
depending on the goal of the analysis by selecting a proper
subset of channels in the 10-20 extended system shown in
Figure 1.

As previously pointed out in Section II, in resting condition
with eyes closed, the predominant Alpha oscillations can
be detected especially in the parieto-occipital region of the
scalp. They reflect the default mechanisms of cortical neurons
activity synchronization [35]. Therefore a description of the
ability of the central nervous system to transmit signals to
and from the cerebral cortex can be carried out focusing on
signals from parieto-occipital electrodes. On the other hand, a
widespread reduction in activity is commonly observed turning
to open eyes resting conditions, which reflect neuronal Alpha
desynchronization.

Furthermore, various sensor configurations can be employed
for the effective detection of different EEG activation patterns
during the performance of different mental calculation tasks.
Some significant differences among those tasks, related to
change in power between task and rest conditions, have been
observed in the Delta and Beta bands in the frontal lobe,
reflecting different selective processes during focusing on
relevant information [26] and depending on the complexity
of the task and the specific cognitive function involved. In
the same work a general increase of Delta, Theta and Beta
activity in frontal leads during subject’s internal concentration
has been observed. This is in accordance with the evidence that
among the various functions of the human brain, the allocation
of the brain resources are governed by the frontal lobe. In
particular decision making, reasoning and complex calcula-
tion require the integration of multiple processes, specific of
each task. This results in differences of frontal lobe activity
among tasks, reflecting activation of different neural networks.
Therefore frontal leads can be effectively employed for the
analysis of such specific functions. More specific electrode
configurations are commonly employed in the analysis of brain
responses. In particular, several studies in literature addressed
the effectiveness of different electrode configurations used to
detect the P300 brain response. A trade off between user
friendly solutions employing few electrodes and accuracy in
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terms of correct classification of brain responses is needed
for the suitability of such P300-based systems. Good results
have been obtained in [36] employing only eight electrodes
from the midline and the parietal region of the scalp as picto-
rially shown in Figure 5 (a). Thereby accuracy improvement
has been obtained by removing redundant information from
contiguous time points which would reduce the generality
of the analysis. A smaller subset of the electrodes montage
is considered when studying VEP signals related to specific
kind of visual attention stimulation as detailed in Section
III-A. In these cases EEG signals are typically recorded from
electrodes located in the posterior region of the scalp, mostly
over the left and right hemispheres of the primary visual
cortex. Indeed, either periodic or transient brain responses to
stimulation involving the visual system can be detected just
considering electrodes O1 and O2 [37]. Also in the analysis
of rhythm topographies during motor imagery protocols, a
subset of the extended 10-20 International system is often
employed, considering sensors placed over the sensory-motor
cortical area as shown in Figure 5 (b) [32]. In fact it has
been repeatedly shown that both movement and motor imagery
are accompanied by desynchronization in µ and β bands
over the centro-lateral side of the scalp [32]. Signals from
motor cortex are also employed for the performance of speech
imagery protocols. It has been shown that neural activation,
detected over medial and posterior regions, occurs during
imaginary lip movement and vocalization of vowels [33] or
their mental repetition. The signals acquired by the electrodes
that are distant from the active regions may not carry sig-
nificant information with respect to the employed elicitation
protocol and therefore they can be discarded thus allowing a
more reliable selection of EEG features. Moreover, effective
negative and positive SCP shifts can be controlled selecting
the best performing channel. In this regard, in [34] it is shown
that self-regulation skills differ among subjects, but that the Cz
channel could be generally used for an effective SCP feedback
learning. Interestingly, in that study it was shown that many
subjects generated a maximal SCP differentiation at other,
often neighboring, electrodes than Cz. On the other hand, the
evaluation of the most effective electrodes placement strongly
depends on the task the enrolled subject is involved in. In
[38] it is observed how occipital channels account strongest
for the detection of mental state differences reflected in Alpha
activity during a visual surveillance task and that changes of
Alpha activity depend on visual processes.

The above mentioned studies have shown that, depending
on the given goal, the selection of electrodes based on neuro-
physiological considerations can lead to more efficient systems
in terms of the selection of the signals to be processed.

IV. EEG SIGNALS AS BIOMETRIC IDENTIFIERS

In [5], back in 1980, the basis for automatic people recog-
nition using EEG signals were posed. However, only in the
last decade the study of EEG based recognition systems has
received a significant development. EEG signals present some
peculiarities, which are not shared by the most commonly used
biometrics, like face, iris, and fingerprints, and that make the
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Fig. 5. Electrodes placement for a P300 based system: an example (a).
Electrodes placement for a motor imagery based system: an example (b).

investigation on the use of EEG signal as biometric identifier
not a mere academic exercise but an analysis with potential
dramatic effects on the design of the next generation biometric
systems, namely the cognitive biometrics based systems.

Specifically, brain signals are more privacy compliant than
commonly used biometrics like face, iris, and fingerprints,
since they are not exposed and therefore cannot be captured
at a distance. Moreover they cannot be left on a crime scene,
not even a digital one, and being brain signals the result of
a cerebral activity, they are less likely to be synthetically
generated and fed to a sensor to spoof it, like it can happen
when using gummy fingers to spoof a fingerprint sensor.
This also helps in addressing the liveness detection issue.
Furthermore, when using EEG based recognition systems, it
is impossible for an intruder to force a user to authenticate.
In fact stress signals would be present in the measured brain
waves, thus resulting in a denial of access [39].

On the other hand, the use of brain signals poses new
challenges. In fact, being the brain continuously and sponta-
neously active, there is a background electrical activity upon
which the signals of interest, which come from the firing
of specific collections of neurons responding accordingly to
a variety of cognitive tasks, are superimposed. Part of this
difficulty is the understanding of the brain areas where the
response originates. These findings would drive an optimal or
sub-optimal choice about the number of electrodes to use and
their location. Furthermore, due to the weakness of the signal
detected on the scalp while generated on the cortex, the EEG
acquisition process results very sensitive to endogenous and
exogenous noise, that is artifacts generated by physiological
processes and by external sources respectively. Therefore, the
basic mechanisms which are behind the physiological process
of brain signal generation, the signal stability in time, the
acquisition protocols, the optimal sensors location depending
on the employed acquisition protocol, the amount of the
discriminative information, as well its frequency localization,
need a much deeper understanding.

In this Section the different characteristics of a biometric
identifier, namely universality, uniqueness, permanence, col-
lactability, performance, acceptability, and circumvention, are
detailed with respect to EEG biometrics. It is worth pointing
out that the analysis that follows has different depth levels
for the different desired characteristics, since EEG biometrics
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is still in its infancy and an exhaustive analysis of the afore-
mentioned issues is still missing in literature. Nevertheless, in
the following we draw some considerations, which, in same
cases, have been borrowed from physiological studies on EEG
signals made for clinical applications and that can be applied
to the field of EEG biometrics.

A. Universality

Each person should have that characteristic
The level of universality of brain signals is very high. In fact

people with no pathological conditions affecting the brain, can
make use of EEG biometrics.

B. Permanence

The characteristic should be sufficiently invariant, with
respect to the matching criterion, over a period of time

The issue of the reproducibility of EEG biometrics in dif-
ferent acquisition sessions, in other words the intra-individual
EEG stability, has been object of scientific investigation within
the neurophysiology field in the past [40], [41], [42]. In
fact, also in clinical applications, it would be desirable not
to have significant variations of an individual EEG pattern
when no alterations, due for example to new pathological
conditions, occur. In the clinical field these studies are known
as “test-retest reliability” or as “longitudinal” studies. Of
course the aforementioned issue is strictly dependent on the
features which are extracted to summarize the EEG and on
their reliability. It is worth pointing out that a significant
effort has been done for the test-retest reliability analysis of
EEG in resting conditions as well as, in the recent years,
when performing cognitive and sensory tasks. Some works
are detailed in the following.

In [7] eight-channel recordings for a set of 47 healthy sub-
jects under conditions of rest and perceptual stimuli have been
acquired. The power spectra in the range [8, 13]Hz, α subband,
were evaluated and a variance analysis was done in order
to determine their dispersion characteristic. The performed
analysis has revealed that EEG spectra are more distinctive in
the eyes closed resting state with a significantly strong Alpha
rhythm, while performing a task would somehow normalize
the Alpha activity thus reducing the inter-individual difference.
In [8] both the intra-individual and the inter-individual repro-
ducibility of EEG parameters have been analyzed for a group
of 12 healthy people, mainly women, in open eyes resting
condition. Parameters related to the amplitude profiles in the
different frequency bands were considered in this analysis.
Results showed that for all the considered characteristics,
their variance among different individuals was greater than
among different measurements for the same individual over
a period of two-three months. It appeared that Alpha activity
is the most powerful indicator of the inter-individual differ-
ences, whereas Delta and Theta indicators have smaller inter-
individual variances. In [43] eight-channel signals for a set of
26 healthy children, with an age between 10 and 13 years,
under conditions of rest with closed eyes, were acquired to
study test-retest reliability considering two EEG recordings 10
months apart from each other. Power spectrum related features

were used and different rhythms were examined. In summary
the Alpha rhythm manifested a good permanence level in
the test-retest framework for the considered features, whereas
the Delta band was found less permanent. In [44] test-retest
reliability was investigated for a set of 19 healthy adults whose
EEG was recorded using 15 electrodes, F3, F4, F8, T3, T4, T5,
T6, O1, O2, P3, P4, C3, C4, and Cz, considering acquisition
sessions separated by 12-16 week intervals. The employed
elicitation protocol consisted in instructing the subjects to
listen to randomly reproduced tones with closed eyes, and
in asking them to respond to the stimulus by pressing as
quickly as possible one of two switches, depending on the
played tone’s level, high or low. Spectral analysis was done,
and peak and median Alpha frequency resulted as the most
stable spectral features. It was also experimented that the
electrodes montage affects the test-retest reliability. In [45] 45
healthy subjects were tested in an interval of 25-62 months in
order to infer about the intra-individual variability. Features
such as the absolute and relative power, the median and
peak frequency, the entropy, etc. where used. It was shown
that Alpha peak frequency and median frequency are stable
characteristics for the period under investigation, in the sense
that their intra-individual variation was less significant than
the inter-individual variations. Test-retest reliability has been
considered also in [46], where a closed eyes protocol has
been used to acquire signals from a sample of 20 people
during two EEG recording sessions at a mean distance of 15
months. The authors resorted to rely on power spectra which,
when a closed eyes protocol is implemented, are dominated
by a peak in the Alpha subband. Specifically, the amplitude
and the frequency of the peak as well as the shape of the
power spectra were taken into account, and a set of three
electrodes, namely AFz, Cz, and Pz, from the median sites
was chosen among 60. The test-retest reliability was verified
by implementing a recognition system, which proved that
the considered features guarantee high performance across
the two considered period of time. It is worth pointing out
that although a significant effort has been done mainly for
the test-retest EEG reliability analysis in resting state, some
attempts to analyze other tasks have been performed as well.
In [47] the reliability of EEG signals recorded during cognitive
tasks, specifically a working memory task and a psychomotor
vigilance task, was investigated on a set of 21 healthy adults.
The inter-session time was 7 days on average and the power
spectra of Theta at Fz and Pz, and the slow and fast Alpha
spectra at Pz were examined. Both considered tasks showed
a high reliability within and among sessions. In [48] the test-
retest reliability of a working memory task has been analyzed
using the same acquisition conditions, that is electrodes’ type,
time span between the two acquisition sessions, features, and
validation strategy, as in [46]. The intra-individual stability
was found higher with respect to the inter-individual variation,
and the recognition rate comparable to that obtained in resting
state with closed eyes in [46].

Despite the effort that has been done in the neurophysiol-
ogy field, the repeatability issue of EEG biometrics has not
received the necessary attention from researchers in the bio-
metric scientific community. Nevertheless, its understanding
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is propaedeutic towards the deployment of EEG biometrics in
real life. Few sporadic and non exhaustive analysis have been
given in the biometric literature so far. In [49] the session-
to-session variability was tested on a dataset composed of 6
subjects performing imagined speech. The entire set of 128
channels was used to extract features, and results show a
decreasing performance when considering sessions temporally
apart. In [50] the problem of repeatability over time of EEG
biometrics, for the same user, has been specifically addressed.
A simple “resting state” protocol has been employed to acquire
a database of nine people on two different sessions separated
in time from 1 to 3 weeks, depending on the user. Although
the dimension of the database employed is contained, [50]
represents the first systematic analysis on the repeatability
issue in EEG biometrics. Simulations have been performed
by considering different sets of electrodes both with respect
to their positioning and number. In summary, the analysis
has shown that a significant degree of repeatability over the
considered interval can be achieved with a proper number
of electrodes, their adequate positioning, and by considering
appropriate subband related to the employed acquisition proto-
col. However a more exhaustive analysis involving a relevant
number of sessions over a significant period of time as well
as different acquisition protocols is still needed.

It is also worth pointing out that EEG rhythms might depend
on the time of the day as well as on the time of the year
they are acquired, thus reflecting both circadian and seasonal
influences respectively. However, the analysis carried out in
literature (see for example [51], [52], [53]) focuses mainly
on resting state or sustained wakefulness, which are only
partially of interest in the biometric framework. In summary,
although acknowledging that circadian influences might affect
the acquisition of EEG signals, it is worth pointing out that no
exhaustive studies have been done so far to analyze the EEG
circadian dependency for the variety of elicitation protocols
that can be applied to EEG based user recognition.

C. Performance

The use of the characteristic must ensure good performance
Promising recognition rates have been achieved. A detailed

analysis of the recognition performance of state-of-the-art
EEG-based biometric systems is given in Section V. In the
presented works, performance is expressed using different
figures of merit like the genuine authentication rate (GAR),
the false acceptance rate (FAR), the false rejection rate (FRR),
the half total error rate (HTER=(FAR+FRR)/2) and the equal
error rate (EER), that is the HTER evaluated when FAR=FRR.

D. Collectability

The characteristic should be quantitatively measurable with
some practical device

Collectability of EEG signals is dependent on many factors
like the number of electrodes to be used, the need to use
conductive paste or saline liquid to lower the skin impedance
to acceptable levels, and the acquisition time needed to be able
to collect relevant information for the recognition process. All
these issues can limit the collectability of EEG biometrics.

However, recent advances have shown that interesting perfor-
mance can be achieved also limiting the number of used elec-
trodes thus making the signal collection more user convenient
as detailed in Section V. Moreover, the latest technological
developments have shown that the aforementioned issues can
be mitigated as clarified in Section VI.

E. Acceptability

The public should have no strong objection to the measur-
ing/collection of the characteristic

Acquisition of EEG signals may present some drawbacks
in terms of user acceptability being related to brain activity
thus potentially evoking ancestral worries related to “mind
reading” and emotion analysis from the data controller. This
may generate a sense of discomfort in the users. Also privacy
issues can be seen as an obstacle towards the acceptability of
EEG based biometric applications in real life due to the po-
tentiality to detect existing pathologies or disposition towards
pathologies, as possible also for other biometrics. This could
potentially lead to discrimination and undermine the human
dignity. However, no specific studies on the acceptability issue
of EEG biometrics have been performed yet.

F. Circumvention

The characteristic should be robust to attacks
Brain signals, as a result of cerebral activity, are not

exposed biometrics like face, iris, and fingerprints. Therefore,
as internal traits, they are less prone to spoofing attacks than
other external biometrics [54], since they are “secret” by
their nature, being impossible to capture them furtively at
a distance, while this is possible for face and iris, which
can then be synthetically generated. Besides, EEG biometrics
cannot be acquired in absence of the user, since they are not
left on objects like it might happen with fingerprints, that
can be used at a later time in order to spoof the employed
acquisition sensor. This is virtually impossible with brain
signals since they are the result of ionic current flows within
the neurons of the brain in response to a specific task or
during a specific mental state. Therefore, an attacker should
be able to synthetically generate resulting EEG waveforms
and feed them to a sensor to spoof it. Hence, the problem of
liveness detection, which needs to be addressed when using
conventional biometrics, is naturally overcome without the
need to resort to specifically designed sensors.

G. Uniqueness

Any two persons should be different in terms of the charac-
teristic

The uniqueness of EEG signals is a complex issue which
has several facets to consider and that has not captured so far
the necessary attention within the biometric community so far.
Nevertheless, some early studies in neurophysiology, see for
example [7], [10], [55] have demonstrated that EEG is a highly
individual characteristic. In [56] a variance analysis of Alpha
waves in a closed eyes condition showed a significant level
of individuality. In [57] the same conclusions were drawn for
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the open eyes condition. Of course, the level of individuality
is also related to the specific acquisition protocol, subband
analyzed, and to the extracted features. Moreover, it is worth
pointing out that the uniqueness and the permanence issues
can be considered as two facets of the same medal, being
related to the intra-individual and inter-individual distances,
and that these distances get some meaning when related to
each other. Therefore, contributions that address one issue
need to consider also the other one, as evident in the analysis
on the permanence carried out in Section IV-B.

Heritability and personality factors also play an important
role in characterizing an individual’s EEG. In the following
we focus on the dependance of EEG signals on heritability
and personality factors, and report some results found in the
field of neurophysiology which can help to have a better
understanding of the uniqueness issue within the biometric
framework. Specifically, the heritability and the personality
issues are considered in detail in Sections IV-G1 and IV-G2
respectively.

1) Heritability of EEG variants: In neuroscience, the influ-
ence of hereditary factors on individual differences in central
nervous system functioning has been addressed by using elec-
troencephalography as neurophysiological investigation tech-
nique among the others.

In the early seventies it emerged that some aspects of the
ongoing brain activity during resting state is hereditarily de-
termined, that is it carries genetic information [58]. Automatic
classification of genetic EEG variants was first performed in
[59] where spectral analysis was used. More recent studies
have confirmed that both genetic factors and shared and
non-shared environmental influences as well as anatomical
features of the brain and of the related structures around,
like for instance the skull thickness, affect important traits of
neurophysiological functions. An interesting study on genetic
determination of inter-individual variability of brain function-
ing, assessed using relative power values in different EEG
frequency bands, was performed in [60] where EEG recording
acquired from a group of 213 adolescent twins in resting state
with closed eyes were analyzed. Univariate genetic model
fitting was used to estimate the degree of heritability of
EEG power spectrum related features. In general, the results
of the univariate analysis showed that ongoing activity in
monozygotic twins is significantly similar for all frequency
bands and areas because of the predominant genetic influence
on the environmental variances. In particular for most EEG
rhythms the variance of power related features explained by
genetic factors resulted high at all brain regions, except for
power features in the Delta band, where lower heritability was
found at frontal regions. Moreover multivariate modeling was
used in [60] in order to estimate the contribution of genetic
and environmental factors to the covariance of EEG Alpha
power features related to different brain regions. From this
analysis it could be concluded that there are no hemispheric
differences in genetic heritability of power features, and that
the same genes influences Alpha power related features at all
brain regions. In [61] 1038 adolescent twins were recruited
and asked to perform 4 minutes of resting state with closed
eyes. Data were analyzed through multivariate genetic, still

partitioning the total variance into the contributions due to
additive and non-additive genetic factors and to the contri-
bution due to non-genetic factors, including both common
and non-common environmental influences, and measurement
errors. Results confirmed that EEG is a high heritable trait
and that common genetic factors influence all bands in both
hemisphere, especially at occipital sites. Also band-specific
effects were observed to be more influential at frontal sites.
Authors interpreted the common factors as due to either basic
structural features such as skull thickness or reflecting neural
genetic properties affecting EEG features across all frequency
spectrum. On the other hand, band-specific influences seem to
be related to the higher functional and structural complexity
of anterior regions with respect to the posterion ones, which
is also confirmed by neuro-anatomical evidences.

Task performances other than resting state have been con-
sidered to investigate inheritance aspects in cognitive functions
such as attention, focusing, memory or general cognitive
processing. Specifically heritability has been suggested to
affect individual variations of ERPs characteristic features. In
particular in [62] authors studied the genetic influences on
individual differences in the amplitude and latency of P300 re-
sponses, elicited within a so-called delayed-response working
memory task, where subjects are asked to remember for short
time the spatial location on a screen of target stimuli briefly
presented. A number of 708 siblings from 354 families were
recruited for this study. The analysis aimed at distinguishing
three sources of variance for P300 amplitude and latency: ad-
ditive genes, shared and non-shared environmental influences.
Results showed a significant influence of genetic factors on
P300 amplitude, while suggesting the same influence on the
latency. Findings from the application of multivariate genetic
models indicated that common genes influence P300 amplitude
at frontal, central, and parietal regions. From the analysis of
genetic expression in frontal region P300 response, authors
suggested that specific and common genetic factors influence
functionally distinctive cognitive processes, not in contrast
with the evidence that there are more neural generators of
P300. A comparison with results of other studies on the same
issue suggests that the heritability of P300 amplitude is not
influenced by task difficulty, so that a low level cognitive
process genetically mediated could be involved in the P300
elicitation. On the contrary the genetically controlled pro-
cesses influencing P300 latency involve speed in allocation
of attentional resources for the processing of new stimuli,
showing heritability only when the task is cognitively demand-
ing. The studies cited above, among others, have provided
strong evidence about the heritability of spontaneous EEG
and ERPs. Moreover there is evidence that ERP amplitude
is positively correlated with EEG spectral power, especially
for low frequency bands, suggesting commonality of genetic
factors influencing variability of spontaneous EEG rhythms
and ERPs. In [63], where EEG signals from 213 pairs of twins
were analyzed, authors demonstrated that genetic influences
on EEG power spectrum, especially in the Delta range, also
affect the determination of the P300 amplitude. Moreover it
was observed that this is in accordance with the evidence that
ERPs are the result of the synchronization of spontaneous EEG
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oscillations elicited by a kind of stimulus onsets. Moreover
the high heritability of lower frequency EEG activity is in
agreement with the finding that a strong genetic correlation
between ongoing EEG power measures and P300 amplitude
is observed in the Delta band, suggesting variation in P300
amplitude to be the effect of heritable individual differences
in EEG spectral power.

All the aspects discussed above lead to the observation that,
although the EEG is influenced by psychophysiological factors
and depends on the particular cognitive demand, genetic
and environmental factors contribute to provide some unique
features of the EEG signals acquired during a given mental
state, assumed to be individual-specific.

2) EEG personality correlates: Roughly speaking, person-
ality reflects the combination of emotional and attitudinal
traits of an individual, which define a specific profile of
each human being. Several research studies on healthy subject
have reported evidence that relationships between observed
properties of brain activity and personality profiles exist. Some
highlights are given in the following.

In [64] the association between arousal indices, measured
through EEG, and extroversion is examined. Extroverts are
expected to show more rhythmic low-arousal EEG activity
than introverts. Emotional imagery was employed as experi-
mental condition, and the related degree of brain activation was
considered to reflect sensitiveness underlying personality traits.
Results showed higher levels of slow activity in the Theta band
for the impulsive subjects. Moreover broadly distributed Theta
activity, especially in the posterior region of the head, seems to
reflect low arousal levels. These evidences support the initial
assumption. Affective disposition linked to extroversion and
neuroticism has also been related to frontal asymmetry of cor-
tical activation. In this regard, anterior EEG asymmetry in rest-
ing conditions has been investigated considering the functional
relation with the Behavioral Inhibition System (BIS) and the
Behavioral Approach System (BAS), postulated in [65], which
are neural systems reflecting the emotional response to positive
or negative affects respectively. In [66] it has been speculated
that each anterior brain hemisphere is functionally involved
in one of these two neural systems. Therefore individual dif-
ferences of asymmetrical anterior activity have been supposed
to reflect different affective styles influenced by sensitivity of
individual’s BIS and BAS systems. Several studies on healthy
subjects have shown the relationship between affective style
and anterior EEG asymmetry as observed in cortical activation
patterns while experimenting emotions [67] or resting [68],
and significant reliability and test-retest stability along time
were observed.

Moreover, spatial EEG asymmetries other than anterior pat-
terns have been investigated in literature in order to understand
their connection with personality traits. In [69] some findings
are given concerning the relationship linking Alpha and Theta
activity gradient between frontal and posterior sites, with the
sensitivity of the BIS and BAS emotion-based neural systems
introduced above and responsible for behavior regulation.
Some correlation between personality variables, related to
extroversion and neuroticism, and individual differences of
the Antero-Posterior Spectral Power Gradient (APSPG) values

was observed in all frequency bands.
Individual differences in cognitive styles and dispositions

have also been studied through the analysis of the so called
EEG microstates [70]. Such EEG patterns describe rapid
spontaneous reorganization of large scale neuronal activity,
resulting from the integration of incoming information. The
microstate syntax allowed the interpretation of cognitive pro-
cesses typical of each personality group.

V. EEG SIGNAL BASED RECOGNITION SYSTEMS.

The use of brain activity as user identifier is suggested by its
general role in controlling the functioning of the whole body,
the cognitive processing, and the response to external stimuli.
In this regard memory mechanisms (experience), personality
correlates, and anatomo-physiological factors contribute gen-
erating individual specific traits. Some promising results have
been obtained employing different EEG acquisition protocols,
involving both resting conditions with closed or open eyes,
response to specific stimuli, like visual stimuli, and execution
of real or imagined body movements. Since the recognition
performance of a biometric system in general, and of an EEG
based system in particular, depends on the proper design of the
acquisition protocol, on the feature selection approach, and on
the classification algorithm, in this Section the aforementioned
issues will be considered to compare the state of the art EEG
based biometric systems. Databases structures will also be
taken into account.
A. Protocols

Some mental tasks are more appropriate to be performed for
person recognition than others being intrinsically able to high-
light distinctive traits of individuals. The analysis conducted
hereafter aims at pointing out which aspects of cognitive
and mental functions are worth to be further investigated to
effectively recognize users.

Several studies investigate EEG traits during brain ongoing
activity (Section III-A) for user recognition, which does not
require any mental task at all. Specifically, in [71] a closed
eyes in resting condition protocol was employed to acquire
data using the O2 channel from the occipital region of the
head (see Figure 1 for electrodes positioning on the scalp).
The α rhythm, predominant in the parieto-occipital region
during rest as discussed in Section II, was extracted and
overlapping subbands were individually considered for feature
extraction. The tests performed were aimed at verifying four
authorized users against a single class of non-authorized users
and at their identification. The obtained classification scores
in terms of genuine acceptance rate (GAR) ranged between
80% and 100% depending on the individual, the frequency
band, and the test performed, while the correct recognition
rate (CRR) related to the identification tests ranged between
80% and 96%. In general, different frequency bands showed
to be more performant for different individuals. The same
protocol was tested in [72]. A different analysis of the same
rest EEG signals, briefly described in the next Section, yield
to a GAR ranging from 72% to 84%. In [78] the EEG activity
was recorded from 40 subjects while resting both with eyes
open (EO) and with eyes closed (EC). Although eight sensors
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Paper Protocol Database Channels Features Classifier Performance sessions
Poulos et al. [71] ’99a EC 4 1 (O2) α spectrum NN GAR=80%-100% -

CRR=80%-95%

Poulos et al. [72] ’99b EC 4 1 (O2) AR (8th-12ve) NN GAR=72%-84% -

Riera et al. [73] ’08 EC 51 2 AR (100th) & DFT Discriminant Anal. EER=3.4% 4
(FP1, FP2) MI&Coh.&CrossCorr.

Su et al. [74] ’12 EC 40 1 (FP1) PSD k-NN CRR=97.5% 2

Campisi et al. [75] ’11 EC 48 3 (T7,Cz,T8) Burg’s refl. coeff. Polynomial regression CRR=96.98% 1

La Rocca et al. [76] ’12 EC 45 2, 3, 5 Burg’s refl. coeff. Polynomial regression CRR=98.73% 1
Fusion of bands

La Rocca et al. [50] ’12 EC/EO 9 3, 5 Burg’s refl. coeff. Linear classifier CRR=100% 2
Fusion of bands

Abdullah et al. [77] ’10 EC/EC 10 4 AR NN CRR=97% 5

Paranjape et al. [78] ’01 EO 40 1 (P4) AR (3rd-21st) DA GAR=49%-82% 1

Das et al. [79] ’09 VEP 20 20 (occipital) LDA KNN CRR=94% 1

Palaniappan VEP 102 61 MUSIC spectrogram Elman NN GAR=98.12% 1
and Mandic [80] ’07

Palaniappan [81] ’04 VEP 20 61 spectral power ratio BP NN CRR=99.15% 1

Palaniappan [82] ’08 Mental tasks 5 6 (posterior) AR, spectral power, Manhattan FRR==1.5-0% 1
synchronization, entropy (city block) distance FAR=0%

Marcel Motor Imagery 9 8 centro-parietal GMM MAP model adaptation HTER=8.1%-12.3% 3
and Millán [83] ’07 Word generation 9 8 centro-parietal GMM MAP model adaptation HTER=12.1% 1

He and Wang [84] ’10 Motion tasks 7 17 AR (7th) on ICA Naive Bayes HTER=4.1% 1

Brigham and Imagined Speech 6 128 Burg’s AR (2nd) Support Vect. Mach. GAR=99.76% 4
Vijaya Kumar [49] ’10 VEP 120 64 Burg’s AR (4th) Support Vect. Mach. GAR=98.96% 4

TABLE I
OVERVIEW OF STATE-OF-THE-ART CONTRIBUTIONS USING EEG SIGNALS AS A BIOMETRICS.

were employed for the acquisition, only the signals acquired
using the channel P4, from the parietal region of the head,
were considered in the study. An analysis was performed for
user identification in the EO condition and GAR ranging from
49% to 82%, depending on the modeling parameters, was
obtained. In [73] a closed eyes resting condition was used
to acquire EEG signals from 51 subjects using two forehead
electrodes (FP1 and FP2). Through discriminant analysis the
best achieved result was an EER=3.4%. In [74] the influence of
the diet and circadian effects on the identification performance
was investigated. In the considered protocol, segments of 5
minute EEG signals, acquired by an FP1 electrode, were
recorded during rest with closed eyes. Signals were acquired
on two separate days (sessions) in which subjects had water in
one session and coffee in the other one. In each session, 6 EEG
runs were recorded. A database of 40 subjects was collected.
The classification accuracy achieved for subject identification
was of 97.5%. In the same study an implementation of the
Covert Warning (CW) concept to enhance the security of the
EEG-based biometric system was presented. Muscle signals
from clenching the teeth, shown to produce robust signals,
were used to send the covert message. 24 volunteers were
enrolled and performed 3 minutes of resting with closed
eyes, while clenching the teeth 3 times. Authors showed
that CW messages were detected perfectly, while a small
amount of decrease in the identification performance with
respect to the scenario without CW was observed. In [77]
signals from 10 subjects in 5 different sessions over two
weeks, using 8 electrodes to obtain bipolar signals at C3, P3,
C4, P4, were collected. In each session subjects performed
resting state with closed eyes and open eyes, repeating each
task in 5 runs of 30 seconds. Different spatial arrangements
were evaluated in order to identify users using a suitable

electrodes configuration. Best performance of CRR=97% was
obtained employing all 4 channels in the closed eyes condition,
while configurations in the right hemisphere (C4, C4-P4)
produced the highest CRR compared to the other arrangements
relying on an equal number of electrodes. Such result was in
accordance with the significant role of the right hemisphere,
involved in processes like imagination, creativity and feeling,
which are dominant during resting. This supports the idea
that brain activity detected in the right hemisphere shows
distinctive information during rest. Brain ongoing activity in
EC condition was investigated in [75] for user identification.
EEG signals were recorded from 48 subjects employing 56
scalp electrodes. An analysis on suitable scalp configurations
was carried out considering different sets of symmetrically
placed electrodes. Signals filtered in the range [0, 33]Hz were
analyzed, and a best CRR=96.98% was obtained considering
channels T7, Cz, T8. In [76] signals from 45 subjects in
EC resting conditions, acquired through 56 electrodes, were
analyzed. Signals were filtered in order to extract the different
brain rhythms (δ, θ, α, β), so that the different frequency bands
were individually analyzed, as well as combined together.
Different channel configurations were considered to perform
user identification and a best CRR=98.73% was obtained from
a set of 3 parieto-occipital channels. A comparison between
EC and EO condition for user identification was carried out
in [50] on a smaller dataset. Longitudinal recordings allowed
addressing the repeatability of EEG features, which is a very
important issue for the application of biometric systems in
real life scenarios. A perfect identification of users enrolled
in a previous acquisition session was obtained for the EC
condition considering the subband [0.5, 30]Hz and a set of
3 electrodes placed in the posterior part of the head. An
extensive analysis was also performed in [50] in order to find
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the most appropriate set of parameters involved in the analysis.
Other studies on EEG biometrics address the analysis of

brain activity recorded during the performance of different
tasks, involving real or imagined motion, imagined speech,
response to visual stimuli and mental calculation. In particular
in [84] data were acquired from 7 subjects performing motion
related tasks consisting of the interaction with a virtual envi-
ronment by blocking virtual target balls rapidly approaching
the subject. Each subject performed five runs in one acquisition
session. Seventeen channels have been employed, clustered
into 5 groups according to their physical position. Specifi-
cally, the regions right fronto-polar, left fronto-polar, central,
right parieto-occipital and left parieto-occipital were individ-
ually considered for feature extraction. A HTER=4.1% was
achieved, averaging over all subjects and runs, and employing
all acquisition channels. In [83] a person authentication system
based on EEG recorded during imagination tasks, such as
imagination of left and right hand movements, as well as dur-
ing the generation of words beginning with the same random
letter was proposed. The employed dataset was composed of 9
enrolled subjects and eight centro-parietal recording channels,
specifically C3, Cz, C4, CP1, CP2, P3, Pz, and P4, most of
them from the sensory-motor region of the scalp (Section
III-B). Each subject performed three recording sessions on
different days, and four 4-minute runs per session, where the
three tasks were sequentially proposed each lasting 15 seconds.
The signals were preprocessed by retaining the band 8-30 Hz,
which contains µ, β and γ rhythms involved in the activation
of the primary sensory-motor area during movement and
imagination movement (Section III-B). A surface Laplacian
(SL) spatial filter was also applied for a better representation
of the local sources below the electrodes. HTER performance
of 6.6% was achieved for left hand task considering 3 subjects
and runs of the first day, while HTER ranging from 19.3%
to 36.2% was obtained for the same task considering train-
ing/validation and evaluation on different days. Best results
ranging from HTER=8.1% to HTER=12.3% were achieved for
the evaluation sets of days 2 and 3, respectively, performing
incremental learning. Authors showed that the left hand task
was the best suited on the database under analysis for person
authentication and that using training data over different days
improved performance. In [49] a subject identification system
relying on two different EEG datasets was proposed. One
contained VEP responses to visual stimuli collected through
64 channels while showing black and white images of objects
to 120 subjects with a number of trials per subject ranging
from 30 to 120. The other one contained imagined speech
EEG data collected using 128 channels, from 6 volunteers
who imagined speaking the two syllables /ba/ and /ku/ with no
semantic meaning. These latter data were recorded in separate
sessions, each comprising 20 trials for each of six conditions
(runs), represented by different rhythms of the covertly spoken
syllable. The so obtained data were preprocessed for artifact
removal. For the imagined speech data, frequency filtering
was performed to remove electromyographic noise. A best
GAR=99.76% was achieved on 6 subjects for the case of
imagined speech, whereas a GAR=98.96% was obtained on
120 subjects for the VEP case. The authors also observed that

the classification performance does not change much when
using only one rhythm or one syllable. Also in [79] VEP
data for person identification were used. EEG signals were
collected from 20 subjects, by means of a 64 electrode mon-
tage, during a difficult visual perceptual task in which filtered
noise is added to the visual stimuli. Face and car images
were sequentially presented to users as stimuli which appeared
each for 40 milliseconds, after which subjects had to identify
the category of the stimulus, either car or face. 1000 trials
split into runs of 200 trials were presented to each subject. A
subset of 20 electrodes placed in the occipital region of the
head, over the visual cortex (Section III-B) was selected after
investigating statistical informative contribution in the spatial
domain, which resulted in accordance with the experimental
setup (Section III-A). The same analysis showed the period
[120 − 200]ms after the stimulus to be the most informative
with respect to discrimination between individuals, which is
consistent with the latency of the visual cortex activation in
visual attention tasks. Authors used the pre-stimulus and post-
stimulus EEG data to discriminate between individual’s neural
response, obtaining classification rates ranging from 75% to
94% for the best performant post-stimulus set, which showed
VEP dynamics to play a crucial role in person identification.
In [81] VEP signals for individual identification purpose were
also investigated. VEP data were recorded from 20 subjects
exposed to single stimuli, which were pictures of common ob-
jects represented through black and white line drawings, easily
recognizable by all the individuals. EEG measurements were
taken for 1 second from 64 electrodes. Significant differences
were investigated through ANOVA tests on each channel. A
high classification accuracy of CRR=99.06% was obtained in
this study employing all 61 channels. In another study [80]
a similar protocol was employed, and 300 milliseconds VEP
stimuli consisting in showing black and white drawings of
common objects were used to collect EEG signals. Here a
mental task consisting in recognizing and remembering shown
objects was proposed. A database of 102 subjects was used
and signals from 61 channels were recorded, for a total of
3560 VEP signals stored. EEG signals were filtered through a
25−56Hz pass band filter, to retain the γ rhythm containing the
dominant frequencies within the VEP signals spectrum, which
are related to perception and memory evoked when visualizing
a picture. A CAR spatial filter was also applied to reduce the
observed intra-class variance due to scale factors of γ band
energies. A GAR of 98.12% was reached using all channels.
Authors argued that the high classification result over a such
large dataset could be due to the different properties of the
binding process during stimulus perception and recognition
for different subjects. This is in accordance with the evidence
that the brain function underlying VEP generation seems to
be genetically influenced [85], resulting in different levels of
perception and memory between individuals. In [82] a user
recognition system using mental task EEG data, collected from
5 subjects and publicly available 1 was described. The mental
tasks consisted of baseline where the subject was at rest, visual
counting, geometric figure rotation, mental multiplication,

1http://www.cs.colostate.edu/eeg/main/data/1989 Keirn and Aunon
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and mental letter composing. These tasks were chosen since
they involve hemispheric brain wave asymmetry, which was
exploited for individual recognition, among other traits briefly
discussed in the next Section. EEG signals were recorded from
the posterior part of the head on positions C3, C4, P3, P4, O1
and O2. For each mental task a run lasting 10 seconds was
collected within 10 day runs for each subject. Each mental
task run was segmented into 0.5 seconds segments to increase
the sample size. EEG segments were filtered using a common
average referencing (CAR) filter, which consists in subtracting
the mean of the entire electrode montage (i.e.the common
average) from channels of interest at any one instant, and
mean value was removed from each channel. Recognition was
subsequently performed for each mental task separately. The
obtained FRR ranged from 1.5% to 0%, while the FAR was
0% for all 5 subjects.

The results reported above have to be thoroughly evaluated
and compared also considering the features extracted, the
complexity of the classification algorithms employed and
specially the database structures used for training and testing
the classifiers. In this regard some considerations are reported
below.

B. Features

The proper selection of representative and stable features
from an acquired biometric signal is a key step in a recognition
problem. When dealing with EEG signals, specific features
of the brain activity either during resting or specific mental
tasks have shown to have different degrees of distinctiveness
among people. EEG features extraction has been performed
in different domains like the time domain, as well as the
time-spatial or the frequency domain. Among those we can
recall autoregressive (AR) coefficients, power spectrum den-
sity (PSD) function, energy of the signal, autocorrelation
function, latency and area of characteristic peaks. Coefficients
from AR stochastic modeling, which characterize the power
spectral density function of EEG signals, are employed as
features in most of the works on EEG biometrics. Some
of them rely on resting state condition. The Burg’s method
was employed in [75], [76] and [50] to extract the reflection
coefficients from the data AR model fitting. Feature vectors
were obtained concatenating the coefficients extracted from
different sets of electrodes. Different analysis on the extracted
features vs the brain rhythms were performed in [75] and [76]
were 6-th and 12-th model orders were selected respectively
to obtain the coefficients assorting the feature vectors. The
repeatability of the obtained EEG features was furthermore
addressed in [76], where a 10-th model order was adopted to
fit the dataset and extract reflection coefficients. In [77] AR
coefficients of order ranging in the set [3÷21] were considered
as features representing EO and EC resting signals, recorded
with a sampling frequency of 256Hz. The best performing
model order, namely p = 21, was empirically selected and
feature vectors composed of 21 concatenated AR coefficients
were obtained from single channels or their combinations.
AR features were also employed in [78] were resting EEG
signals were acquired. Specifically, Lattice Equivalent Model

and Levinson Recursion were employed to extract AR models
from EEG traces sampled at 120Hz, and model orders ranging
in the set [3 ÷ 21] were tested. Only coefficients from the
P4 electrode were used to assort the feature vectors. Authors
observed that the discriminant power of the features improved
as the model order increased up to 21. Also in [73] the EEG
signals recorded during EC rest are modelled through an AR
model. AR coefficients as well as other features extracted
from both single channel measures and synchronicity measures
between the only two forehead channels used FP1, FP2 were
tested for user recognition. Signal processing consisting in
EEG sampling at 256Hz, filtering in the band [0.5, 70]Hz,
and application of a notch filter at 50Hz was performed.
Both single channel and inter-channels features were tested.
Specifically, for the first category, AR coefficients of an 100
order model and discrete Fourier transform retaining the band
[1, 40]Hz were considered, whereas, for the second category,
features including mutual information, spectral coherence and
cross-correlation measures obtained for the channel pair ana-
lyzed were used. All features were tested separately, and later
merged at the decision level, as described in Section V-D.
In [72] AR coefficients were extracted from the α rhythm
contained in EEG signals which were recorded during EC
rest, employing a bipolar measure of voltage between leads
O2 and CZ. Signals sampled at 128Hz were modeled through
8 AR coefficients used as features for the authentication of
four subjects. In [84] EEG data related to motion in a virtual
environment were modeled through independent component
analysis (ICA). The 17 acquisition channels provided signals
downsampled at 125Hz clustered into 5 brain regions. ICA
was performed for each scalp region separately, thus selecting
the most energetic component for each region as a feature.
AR modeling, with order equal to seven, was then performed
on each of the selected components thus obtaining the fea-
ture vectors tested for person recognition. Different features,
concatenated in a unique vector composed of 126 elements,
were tested in [82] for subject recognition during thought
activity. Six AR coefficients were extracted using the Burg’s
method from the signals acquired through the 6 employed
channels, and sampled at 250Hz. Moreover, channel spectral
power values in the frequency bands α, β and γ were provided
thus obtaining 18 additional features. Other 27 features were
collected computing inter-hemispheric channel spectral power
differences in the same spectral bands. The so called inter-
hemispheric channel linear complexity, which accounts for the
amount of spatial synchronization between channels, was also
computed for each band providing 27 other features. Finally
six approximate entropy values for each band, quantifying
non-linear complexity, were also considered to assort the total
feature vectors. Principal component analysis was then used to
reduce feature size in the classification problem. Other works
on EEG-based biometrics consider feature vectors composed
of spectral values only, to represent inter-subject variability.
Some characteristics of the EEG spectrum carry genetic in-
formation as well as personality correlates as described in
Sections IV-G1 and IV-G2. In [71] the spectrum of the EEG
signal in the α rhythm frequency band was used to obtain
feature vectors. The α rhythm, extracted from single channel
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EEG acquired in resting conditions, was further partitioned
into three 3Hz overlapping subbands, each containing 540
spectral values, which were separately considered to address
the verification and identification problems. In [74] tested PSD
values as distinctive features of single channel EEG signals
acquired in resting conditions, for the implementation of a
biometric-based covert warning system. PSD was computes
via Burg’s method, and the spectral content in the range
[5, 32]Hz was retained to generate the feature vectors, thereby
removing high and low frequency noise. In [83] extracted PSD
values in the frequency range [8, 30]Hz from 8-channel EEG
signals, acquired during task performance related to motor
imagery and generation of words, were considered. Electrodes
and frequency band were chosen according to evidences from
BCI research on the detection of the relevant information
for the mental tasks considered. PSD was estimated every
62.5ms using windows of one second, through the Welch
periodogram algorithm, obtaining a resolution of 2Hz in the
range [8, 30]Hz. PSD values, normalized to the total energy,
computed for the 8 employed channels, were concatenated
so that a 96-dimensional feature vector, 8 channels × 12
frequency components, was obtained for each one second EEG
sample.

Other contributions, still using features from the power
spectrum of EEG signals, propose further processing to extract
distinctive traits in the frequency domain. For example in [81]
the estimation of γ band spectral power ratio values from
each of the 61 channels employed to record VEP signals
was proposed. Values from all channels were concatenated
to form the feature vector for each of the 40 VEP trials for
each subject. A one-way ANOVA test was employed to infer
about the significance of the differences between the features
extracted from all the subjects, and significant differences were
observed for all the channels. Spectral features from VEP
signals, filtered in the band [25, 56]Hz, were also extracted
in [80]. Multiple Signal Classification (MUSIC) algorithm was
used to estimate dominant frequency and power content, based
on the eigen-decomposition of the data correlation matrix.
Unique descriptors of person’s brain activity and dimension-
ality reduction were obtained from the performed MUSIC
based spectral analysis of the VEP signals in the γ band. The
dominant powers within the MUSIC spectrogram extracted
from each of the 61 employed channel, and normalized with
respect to the total power from all channels, were concatenated
into a unique feature vector. The so obtained VEP biometrics
were used for subject identification. A different approach was
adopted in [79], where the linear discriminant analysis’ (LDA)
coefficients, based on the Fisher’s criterion, were extracted
from EEG recordings and employed to study spatio-temporal
patterns encoding discriminative information in VEP signals.
More in details, after the so called “Fisher-brains” analysis,
employed to select the most informative electrodes location
and time interval to analyze, feature extraction was performed
by projecting EEG data into the space generated by the
Fisher’s LDA coefficient matrix. Features from the 200ms pre-
stimulus and 500ms post-stimulus EEG data were tested for
person identification.

C. Database structure

As previously pointed out, for the purpose of biometric user
recognition, a proper structure of the dataset under analysis
is needed to evaluate the system’s recognition accuracy. The
dataset size, including the number of subjects and trials
performed, the cross-validation framework provided and above
all, the number and temporal distance of recording sessions
performed are key elements that must be considered in the
recognition pipeline. Most of the datasets used to speculate
about the use of EEG for biometric recognition are collected in
different frameworks than the biometric one, mainly within the
BCI context. Moreover, while some of these studies consider
different acquisition sessions, performed on different days,
most of them implement user recognition based on a single
acquisition session for each user who performs different runs
of the same experiment within the same session. The structure
of the databases employed in state-of-the-art contributions are
thus detailed in the following.

In [71] and [72] a dataset of 255 EEG recordings is
provided. Specifically, 4 genuine subjects and 75 impostors
have been considered. For each of the 4 subjects, 45 EEG
recordings, each lasting 3 minutes, have been acquired. One
EEG recording has been rather acquired for each of the
75 impostors, thus obtaining a total of 255 EEG signals
(75 + 4× 45 = 255). For each genuine subject 25 recordings
were used for the training, while the remaining 20 for test. No
cross-validation framework was provided and no information
is given about recording sessions. The dataset employed in
[79] was collected from 20 subjects participating in the study.
For each of them, 1000 trials, split into 5 runs of 200 trials,
were recorded on a single session. A 10-fold cross-validation
scheme was implemented for the evaluation of the system’s
performance, and 10 independent cross-validation runs were
performed to estimate the classification rates. The dataset used
in [81] to perform individual identification contained signals
from 20 subjects, with 40 VEP trials per subject recorded on
a single session. Therefore, a total of 800 trials assorted the
dataset under analysis. Half of them were used for training
and the remaining half for testing, within 10 runs of a 10-
fold cross validation scheme. A larger VEP dataset was used
in [80], where 102 subjects were recruited for the study. A
total of 3560 trials, from a minimum of 10 to a maximum
of 50 blink free trials per subject, were collected during
one session. Again a 10-fold cross-validation scheme was
performed 10 times to statistically evaluate the recognition
performance. Specifically, training was done using nine sets
of feature vectors, while the remaining set was used for
classification. This process was repeated 10 times, using each
time nine different sets of feature vectors for training. For
the recognition experiment proposed in [84] authors used data
collected from 7 subjects performing 5 tasks. For each subject
and each task, 11 trials were recorded in one acquisition
session, so that a total number of 7 × 11 = 77 frames per
task assorted the analyzed dataset. A leave-one-out cross-
validation approach was employed to evaluate performance.
For a given subject, ten of the eleven trials were used for
training and the remaining one for testing. The trials from
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Paper Subjects Trials per subject Acquisition sessions Training/Classification Cross validation
Poulos et al. [71] ’99 4 genuine 45 1 25 training n.a.

75 impostors 1 20 classification

Das et al. [79] ’09 20 1000 1 n.a. 10 10-fold runs

Palaniappan [81] ’04 20 40 1 50% training 50% classification 10 10-fold runs

Palaniappan et al.[80] ’07 102 10 to 50 1 90% training 10% classification 10 10-fold runs

He et al. [84] ’10 7 11 per task 1 10 frames for client training leave-one-out
(5 tasks) 1 frame for client class. all combinations

66 frames for impostor class.

Paranjape [78] ’01 40 8 1 50% training 50% classification n.a.

Campisi et al. [75] ’11 48 20 1 70% training 30% classification 50 runs

La Rocca et al.[76] ’12 45 77 1 2/3 training 1/3 classification 77 runs on different partitions

Su et al. [74] ’12 40 6 per session 2 over two days 50% training 50% classification 100 hold-out runs

Abdullah et al. [77] ’10 10 11 per session per task (5) 5 over two weeks 90% training 10% classification 10 runs on different partitions

Palaniappan et al.[82] ’08 5 10 5 over 5 days 50% training 50% classification 4 4-fold runs modified

Riera et al.[73] ’08 51 12 4 training/classification 8 different runs for
within 34-76 days on different days genuine/impostor tests

Marcel et al.[83] ’06 6 genuine 4 per session per task (3) 3 over three days training/classification n.a.
3 impostors on different day

Brigham et al.[49] ’10 6 20 per experiment (6) >1 training/classification 4 runs
over three days on different days combining sessions

25% training 75% classification 4 4-fold runs

La Rocca et al.[50] ’13 9 237 per session 2 training/classification 230 runs on
over three weeks on different days different partitions

TABLE II
DATASET CHARACTERISTICS

the other 6 subjects were used to build a set of impostors’
trials. EEG data collected from 40 subjects were used in
[78] to study subject identification. Each subject provided
about 8 trials of 8.5 seconds during one acquisition session,
hence a dataset composed of 349 frames was obtained for the
analysis. 50% of frames were used to train the classifier while
the remaining 50% to perform identification tests. In [75] a
dataset composed of 48 subjects, each of them performing one
acquisition session, was collected. Each EEG signal had a 60
seconds duration and was segmented into frames of 3 seconds
duration so that 20 feature vectors were extracted for each
user and 50 independent cross-validation runs were performed
to test identification accuracy, considering different frames
for the training and for the test. A similar framework was
proposed in [76] for a dataset composed of 45 subjects who
underwent one acquisition session. Three second overlapping
frames were extracted from 60 seconds recordings, in order to
increase the sample size for training and test, thus obtaining
77 frames for each subject. Non-overlapping frames between
the training (2/3 of the total number of frames) and the test
(1/3 of the total number of frames) datasets were considered
for the solution of the recognition problem within a cross-
validation framework. 77 cross-validation runs were provided
considering 77 different partitions of the dataset into subsets
of subsequent training and test frames.

All the aforementioned papers do not allow to infer about
repeatability and stability of EEG features which on the other
hand represent properties of paramount importance for deploy-
ing an EEG-based biometric system in real life. Furthermore,
although in some referred works, different acquisition sessions
have been provided, they were considered to assort a single
dataset, where randomly selected EEG segments were used for
training and testing a classification algorithm for recognition

purpose. In [74] the tested dataset is composed of 40 subjects
whose signals were recorded on two separate days. In each
session 6 runs were performed by each user at different time
points. Therefore the dataset comprised 480 EEG recordings
(40 × 2 × 6 = 480) in total. Within the considered cross-
validation framework, half of the 12 recordings for each
subject was randomly selected and used to train the classifier,
while the remaining half was employed to test the recognition
accuracy. This process was repeated 100 times, and the average
performance was given, losing information on the different
sessions. Also in [77] EEG signals from 10 subjects were
recorded in 5 separated sessions over 2 weeks. In each session
5 different runs were provided for each task, and 11 trials per
task were repeatedly performed, so that a dataset composed of
275 EEG frames for each user (11×5×5 = 275) was obtained.
The collected dataset was randomly divided into training and
testing subsets, considering 90% and 10% of the whole data
respectively, shuffling signals recorded on different sessions.
10 cross-validation runs were provided for the system’s perfor-
mance evaluation, considering 10 different partitions. In [82]
the dataset analyzed is composed of EEG signals recorded
from 5 subjects performing 10 runs for each of the proposed
mental tasks, each performed on different single day sessions.
For each subject, 200 EEG segments (trials) were extracted
from all the recordings related to each mental task. In the
proposed recognition framework for each subject data were
split into 50 randomly selected frames for training, 50 different
randomly selected frames for validation and the remaining 100
frames for recognition tests. The performance was provided
within a modified 4-fold cross-validation framework times to
increase the reliability of the results.

Only few works test the distinctiveness of EEG features
for user recognition considering different acquisition sessions
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performed on different days for the training and the test
stages separately. In [73] 51 subjects, who underwent 4
different recording sessions within 34-74 days, and 36 subjects
recorded just once who represented the group of intruders to
be revealed, were considered. A cross-validation framework
was here provided for the identification experiment, where
for each of the 51 subjects 3 takes related to 3 different
days are used for the training, while the remaining recording
session is used for the test. For each take the first or the
second minute EEG segment is considered for the training.
The process was repeated for all combinations of sessions
and EEG segments. In [83] the analyzed dataset contains
data from 9 subjects recorded during 3 different sessions over
3 days. Each session comprises 4 runs lasting 4 minutes,
which are split into 3 frames, each containing a 15 second
EEG segment, related to a given mental task. Hence, the
entire dataset is composed of 9 × 3 × 4 = 108 frames per
task used to solve the classification problem. In some of
the performed experiments, sessions from different days are
separately considered to assort the training and the evaluation
subsets. In particular in one of the experimental protocols,
3 subjects are considered as impostors and the remaining 6
as clients. Two runs from the first day were used to train the
classifier on genuine users, and one different run from the same
day was considered to validate the model. The last run from
the first day and all runs from the second and the third days,
were considered to evaluate the classification performance
separately on days 1, 2 and 3. In another protocol, half of
the day 1 runs and half of the day 2 runs were used for client
training, the remaining runs from the same days were used
to validate the model, and all runs from the day 3 session
were used for performance evaluation. Finally authors tested
incremental learning employing the first run of each session
for incremental client training, and considering the remaining
runs for client/impostor evaluation. This allowed to evaluate
the accuracy of the system while enrolling subjects during a
day, and performing recognition tests on subsequent days. In
this case a degradation in the recognition performance was
observed by the authors, compared to cases where training
and test subsets belonged to the same day. In fact, referring to
the proposed framework, they claimed that data collected over
only one day is not enough for training robust models. One
of the datasets analyzed in [49], related to speech imagery,
contained data from 6 subjects whose signals were recorded
over separated sessions, each composed of 20 trials for each
of the performed experiments. A total number of 3787 trials
were used in the analysis, including all 6 experiments. A
4-fold cross-validation framework was provided to evaluate
performance, and 10 runs were performed keeping training and
test sets distinct. In one of the performed tests data recorded
on 2 different days assorted the training and test datasets,
and all combinations of sessions were considered: day i to
train the classifier and day j to evaluate performance, with
i, j = 1, ..., 4 and i 6= j. Considering the obtained results,
authors could observe that the tested features representing
speech imagery EEG data are most likely not fully stationary
with respect to time. Finally, in [50] the dataset analyzed
contains signals recorded during two different acquisition

sessions performed on different days, from 1 to 3 weeks
apart depending on the subject. 9 subjects performing resting
state were enrolled in this longitudinal study. EEG signals
of duration of 60 seconds were segmented into frames of
1 second, with an overlap factor of 75%, thus obtaining a
number of 237 frames for each subject and each of the two
temporally separated recording sessions. Therefore, for the
solution of the recognition problem, frames for the training and
for the recognition datasets were obtained from two different
acquisition sessions in order to infer about the repeatability of
the EEG features over the considered interval, for the acquired
dataset. Performance evaluation is provided within a cross-
validation framework, obtained selecting for each user 75%
of feature vectors related to cyclically subsequent training
frames, while 75% from subsequent test frames. Moreover,
within the cross-validation framework, classification results
were reported separately considering the two combinations
obtained training on day i and performing recognition tests
on day j, with i, j = 1, 2 and i 6= j.
D. Classification algorithms

The efficiency of the classification algorithms employed
for EEG biometrics user recognition depends on the specific
distribution of the observed vectors in the feature space. In
fact, for a proper solution of the classification problem it
is important to use a suitable classifier fitting the scattering
distributions generated by the different classes to distinguish
among. Different machine learning algorithms present spe-
cific capabilities in approximating different boundary sur-
faces among the actual decision regions in the feature space,
representing the classification problem. The most commonly
employed algorithms used in literature for EEG biometrics are
based on Neural Networks (NNs), suitable in the classification
of data not linearly separable in the feature space. Several
architectures of NN based classifier have been proposed in
the published studies, with different numbers of nodes for
each of the considered layers, and different training functions,
such as the scaled-conjugate training function [77], the back
propagation algorithm [80], [81], and the Kohonen’s Liner
Vector Quantizer [71], [72]. Some other works rely on the
use of the k-Nearest Neighbor (KNN) classifier, based on
different distance measure techniques [74], [79], [80]. Also
Discriminant Analysis based on different linear and non-linear
discriminant functions have been exploited for the solution of
the recognition problem based on EEG [73], [74], [78]. In
[49] a support vector machine classifier with a linear kernel
to identify subjects based on EEG features was used. Other
employed classification algorithms can be found in [82], [83],
and [84]. In [83] Maximum a Posteriori training was employed
to adapt a generic model to a client-dependent model. In
[82] the Manhattan distances between feature vectors from
training and from validation datasets were computed, in order
to implement a two-stage biometric authentication method. It
was based on the computation of threshold values used to
improve accuracy in the classification of the test dataset, in
terms of reduction of FAR and FRR. Polynomial regression
has been employed in [75] and [76] where different expansion
degree values were tested, while in [50] a linear classifier,
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resorting to the minimization of the mean square error as
optimization criterium, has been employed. A naive Bayes
approach was adopted in [84] to probabilistically model the
observed feature vectors, assuming gaussian distribution and
statistical independence of elements from the generic feature
vector.

VI. RESEARCH DIRECTIONS

As outlined in the previous Sections, EEG biometrics poses
several new challenges to be tackled by researchers. Many
issues are shared also by other biometrics, but many others
are peculiar of EEG based systems. For example permanence
and uniqueness are two basic requirements that need to be
well analyzed for each candidate biometrics to be employed in
actual systems. However, when dealing with EEG biometrics,
the target brain responses need to be elicited using some
specific protocols, ranging from resting state to imagined
movements to speech imagery and so forth. This variety of
elicitation methods has not equals within the biometric field
and, with the exception of the resting state condition, which
has been deeply analyzed mainly in the neurophysiology
area, all the other protocols have not been received the
necessary attention from the biometric scientific community.
Therefore, permanence and uniqueness need to be analyzed
with respect to the protocol employed and also with respect
to the extracted features. It is worth pointing out that, the
elicitation methodology is just one aspect of the protocol
definition. For example, electrodes positioning and number
need to be optimized according to the employed elicitation
mechanism. Despite the several advantages of EEG biometrics,
already listed in the previous Sections, against conventional
biometrics, the major obstacle towards the deployment of EEG
based biometric systems is mainly related to the inconvenient
acquisition setup for users, consisting of a number of elec-
trodes placed on the scalp, usually employed with conductive
gel to reduce skin impedance. Therefore, the minimization of
the number of employed electrodes is a crucial issue that needs
to be tackled in order to improve user’s quality of experience.
However, some EEG based products, mainly for entertainment
purposes, which employ only few electrodes, have already
been commercialized. Although, they are not implementing
any biometric system, they can be seen as a proof of concept
that the electrodes number can be reduced. Moreover, recently,
dry electrodes not requiring any conductive gel have been
introduced in the market. Their use would alleviate the user
inconvenience with no degradation of performance but with
an increasing price. Therefore, improvements in EEG signal
acquisition and technological advances in sensor design, which
could dramatically improve the system usability, need to be
addressed by researchers in order to outline some guide-
lines for practical system implementation which could trigger
attention from industry, and which can be a reference to
lead future research towards feasible EEG biometric systems.
Some developments in this regard have been presented in
[86] where some prototypal contactless electrodes, that is not
requiring any electric contact with the scalp, made of flexible
polymeric material have been proposed. Also the reduction

of the acquisition session’s length as well as the relaxation
of the acquisition conditions are important research lines that
need to be addressed by researchers. Specifically, EEG signals
are usually acquired in dim lit rooms where no external
visual or audio stimuli are present. Of course this is not
a realistic condition for systems that need to operate in an
unprotected environment. However, some attempts to use EEG
based systems in real life conditions have been already taken
into account as in [87] where single trial EEG signal collection
in outdoor walking for brain computer interface purpose has
been addressed, or as in [39] where a mobile based scenario,
employing low cost acquisition devices, is considered for
EEG based recognition systems. Public databases, collecting
data using different acquisition protocols, are strongly needed.
In fact, only few, collected for other purposes rather than
biometric recognition, are available. The spoofing issue is
an open research topic. At the present stage of research, no
attempts to spoof EEG based recognition systems have been
documented in literature. Therefore a thoughtful analysis on
possible spoofing methodologies could help in either corrob-
orating or criticize the statement that EEG based systems are
more secure than systems based on other biometrics at least
at the sensor level.

In summary, EEG biometrics offers plenty of research
opportunities which are limited only by the researchers’ imag-
ination.

VII. CONCLUSIONS

In this paper we have given an extensive and critical review
on the state-of-the-art of EEG based automatic recognition
systems. An overview of the neurophysiological basis, which
constitute the foundations on which EEG biometric systems
can be built, has been given. Employed acquisition protocols,
features extraction algorithms, database structure, classifica-
tion algorithm used in state-of-the-art approaches have been
detailed. The major obstacles towards the deployment of EEG
based recognition systems in everyday life in the near future
have been presented and some challenging research lines for
the interested researchers have been suggested.
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